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Abstract
Wedevelop a quantummechanical formalism to treat the strong coupling between an electromagnetic
mode and a vibrational excitation of an ensemble of organicmolecules. By employing a Bloch–
Redfield–Wangsness approach, we show that the influence of dephasing-type interactions, i.e.,
elastic collisions with a background bath of phonons, critically depends on the nature of the bath
modes. In particular, for long-range phonons corresponding to a common bath, the dynamics of the
‘bright state’ (the collective superposition ofmolecular vibrations coupling to the cavitymode) is
effectively decoupled fromother system eigenstates. For the case of independent baths (or short-
range phonons), incoherent energy transfer occurs between the bright state and the uncoupled dark
states. However, these processes are suppressed when the Rabi splitting is larger than the frequency
range of the bathmodes, as achieved in a recent experiment (Shalabney et al 2015Nat. Commun. 6
5981). In both cases, the dynamics can thus be described through a single collective oscillator
coupled to a photonicmode,making this system an ideal candidate to explore cavity optomechanics
at room temperature.

1. Introduction

Thefield of cavity optomechanics explores the interaction between electromagnetic (EM) radiation and the
quantizedmechanicalmotion of nano- ormicro-oscillators [1–3]. Recent developments promise a rich variety
of applications such as precisionmechanicalmeasurements and coherent control of quantum states (see [4, 5]
for recent reviews).When the interaction becomes sufficiently large, coherent energy exchange between the
optical andmechanical degrees of freedombecomes possible and the system could reach the strong coupling
regime. Along this direction, a novel approach consists in coupling a cavitymode to amolecular bond vibration
[6, 7], which is in the ground state already at room temperature, without requiring any cooling. In order to
achieve strong coupling, this has to be done by using an ensemble ofmolecules. This phenomenon has common
ingredients with the collective strong coupling observedwhen electronic excitations of organicmolecules
interact with cavity [8–10] or plasmonicmodes [11], which has been studied extensively during the last years
(see [12, 13] for recent reviews).

In the strong couplingwith an ensemble of vibrationalmodes, the cavity resonance couples to a collective
superposition of themolecular vibrations, the so-called bright state, forming hybrid states called polaritons. In
principle, all other superpositions of vibrational excitations (the so-called dark states) remain uncoupled.
However, within this setting, a thermal bath of low-frequency rovibrationalmodes, which normally only
introduces dephasing [14, 15], interacts with the vibrational excitations andmay influence the systemdynamics.
It is an open question how the dephasingmechanisms affect the strongly coupled dynamics andwhat role the
dark states play. In particular, it is unknownwhether the brightmode in such a system effectively behaves like a
single isolated oscillator, whichwould enable the direct application of protocols developed in cavity
optomechanics.
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In this paper, we present a fully quantum theory of the phenomenon of collective strong coupling ofmolecular
vibrationswith a cavitymode. In contrast to classical transfermatrix calculations, which can be used tofit the
experimental spectra [6, 7] but only provide very limited information about the incoherent dynamics in the
system, our approach naturally incorporates all incoherent processes, in particular those induced by dephasing-
type interactions.We describe the systemusing a quantum-mechanicalmodel of a single photonmode coupled
to an ensemble of harmonic oscillators representingmolecular vibrations (theC=Obond stretchingmode of
polyvinyl acetate at an energy of 215 meV in the experiment [6]). In order to incorporate the coupling of the
molecular vibrations to low-frequency rovibrationalmodes, we assume that the oscillators are connected to
either a common or to independent phononic baths (see figure 1).We employ Bloch–Redfield–Wangsness
(BRW) theory [16, 17] to obtainmaster equations describing the systemdynamics under strong coupling. The
finalmaster equations only contain a few Lindblad terms, with rates determined by the product of (i) the bath
spectral density at the corresponding transition frequency and (ii) algebraic prefactors obtained from
transforming the system into its eigenstate basis. Using the specific properties of the systemunder study, we can
evaluate all these prefactors analytically, and are thus able to directly read off the population transfer rates
between the system eigenstates. This allows detailed insight into the systemdynamics and, specifically, the role of
the dark states. Our results demonstrate that for large enoughRabi splitting, the bright state indeed behaves like a
single isolated oscillator and the dark states play an almost negligible role. For the case of a commonbath,
corresponding to long-range bath phonons, this is even true regardless of the Rabi splitting.

2. Theory

2.1. Coherent dynamics
Wemodel the systemas a set ofNmolecular vibrationalmodes coupled to a single electromagnetic (EM)mode in a
microcavity, as depicted infigure 1. Themirrors in the experiments [6, 7] are actually planar, and the photonic
modes forma continuum,with adispersion relationdepending on the in-planemomentum ∥⃗k .However, the
assumptionof a single EMmode coupling tomanymolecules is justifiedwhen comparing the density of EMmodes
with themolecule density in the experiment. For the jth transversalmode in a cavity of lengthLwith background
refractive indexn, themomentumperpendicular to the planemirrors isfixed to = π

⊥k j

L
, so that the dispersion in

termsof the (two-dimensional) in-planewavevector ∥⃗k is ω = c
n

+ π
∥ ( )k j

L
2 2
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4
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dispersion gives a density of stateswith energy ω ω< max of (here and in the following,we set == 1)

π
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jph
( )
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where ω π= c
n

j

L
j .We assume thatmodes with j=1 and ω ω ω Ω< ≈ + Rmax 1 participate in the dynamics.

Taking the parameters from the experiment of Shalabney et al [6] ( ≈n 1.41, ω = 2151 meV, Ω = 20.7R meV,
≈L 2 μm), this leads to an EMmode density of ≈ ×N 4 10ph

6 cm−2. In contrast, the reportedmolecular

density is ≈ ×d 8 1021 cm−3, giving a 2Dmolecular density of ≈ ×Ld 2 1018 cm−2. There are thus on the order
of 1012molecular vibrationalmodes coupled to each photonicmode, and our assumption is clearly justified.

Within the rotatingwave approximation, i.e., neglecting processes that create or destroy two excitations, the
coherent dynamics of the system is then governed by theHamiltonian:

Figure 1. Sketch of themodel system. An ensemble ofNmolecules interacts collectively with a cavitymode of frequency ωc. The cavity
is tuned to amolecular vibrationalmode. The remaining rovibrationalmodes are introduced by either connecting allmolecules to a
common bath (panel (a)) or by coupling eachmolecule with an independent bath (panel (b)). In both cases the harmonic bath is
characterized by a spectral density ωJ ( ).
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where a is the annihilation operator for the cavitymodewith frequency ωc, and ci is the annihilation operator
of the optically active vibrational mode ofmolecule i, characterized by its frequency ωi and its position ⃗ri .
The cavity-oscillator interaction is given by gi, which depends on the cavity electric field strength and the
change of themolecular dipolemoment under displacement from the equilibrium position (see [6] for
details). For simplicity, in this work we assume a regular configuration in which all themolecules are
identical (ω ω=i m, =g gi ), as well as zero detuning (ω ω= mc ). Using a direct numerical implementation of
BRW theory, which works with arbitrary (but small enough) systems, we have explicitly checked that
orientational disorder ( =g gi j) and inhomogenous broadening (ω ω=i j) do not significantly affect the
results presented below.

We focus on the linear response of the system, so that we can restrict the treatment to the zero- and single-
excitation subspaces3. The +N 1 singly excited eigenstates ofHs are formed by: (i) two polaritons, ∣ ± 〉,
symmetric and antisymmetric linear combinations of the cavitymode ∣ 〉a 0† , with the collective bright state of

themolecular excitation, ∣ 〉 = ∑ ∣ 〉B
N

c
1

0i i
† ; ∣ ± 〉 = ∣ 〉 ± ∣ 〉a B

1

2
( 0 )† and ii) the so-called dark states,

−N 1 combinations ofmolecular excitations orthogonal to ∣ 〉B , which have eigenfrequencies ωm and nomixing
with the photonicmode. The eigenfrequencies of the two polaritonmodes are ω ± g Nm , with Rabi splitting
Ω = g N2R . Collective strong coupling emerges when ΩR is larger than the losses of the system.We can
distinguish three types of lossmechanisms: cavity losses (rate κ), non-radiative internal losses within the
molecules (rate γnr), and dephasing-type interactions. Spontaneous radiative decay is very slow (on the scale of
milliseconds) due to the low transition frequencies and can be safely neglected4.

2.2. Incoherent dynamics
Wenow turn to the description of the incoherent dynamics induced by the different lossmechanisms.Whereas
cavity losses and nonradiative internalmolecular decay can be seen as pure decay channels and included as
constant Lindblad termswhen analyzing the systemdynamics, dephasing-type interactionsmust be treated in a
more detailed fashion, as we detail below. In the case analyzed in this work, these interactions are due to elastic
scattering of low-frequency rovibrational bathmodeswith themain vibrationalmodes involved in strong
coupling, described by the interactionHamiltonian

∑ ∑λ= +ϕ
=

H c c b b( ). (3)
i

N

i i

k

ik ik ik

1

† †

The spatial extension or localization of the bathmodes determines the character of the coupling. In the
following, we focus on two limiting scenarios. In the first scenario, all the vibrationalmodes are coupled to the
same common bath (see figure 1(a)), characterized by delocalized phonons =b bik k with bathHamiltonian

ω= ∑H b bk k k kb
com † . In the second scenario, eachmolecular vibrationalmode is coupled to an independent bath

characterized by on-site phonons bik, with bathHamiltonian ω= ∑H b bik ik ik ikb
ind † . In both scenarios, we

assume that allmolecules are identical (λ λ=ik k and ω ω=ik k).
The frequently used approach of treating dephasing through a frequency-independent Lindblad

superoperator acting only on the vibrationalmodes is not valid in our case as, within the strong coupling regime,
themolecule-cavity coupling (frequency ΩR) ismuch faster than the correlation time of the phononic
environment (the timescale onwhich bath correlations decay, i.e., withinwhich the bath ‘forgets’ about state
changes). Instead, the influence of the backgroundmodes has to be taken into account in the dressed basis
obtained after diagonalizing the strong-coupling interaction. The bath is completely characterized by the
spectral density ω λ δ ω ω= ∑ −J ( ) ( )i k ik ik

2 (with ω ω=J J( ) ( )i in our case). In the following, we assume an
Ohmic environment with a quadratic cutoff at frequency ωcut

ω ηω= ω ω−J ( ) e , (4)( )cut
2

where η is a dimensionless constant that determines the system-bath coupling strength.

3
Wenote that since the systemHamiltonian is quadratic in the bosonicmodes a c{ , }i , it can in principle be diagonalizedwithout restriction

to any excitation subspace. This leavesmost of the derivation presented in the following unchanged, but introduces additional prefactors
depending on the excitation numbers in the incoherent rates derived below. For simplicity, we thus allow atmost one excitation.
4
Note that there is no Purcell enhancement of the spontaneous emission, as the effect of the cavitymode is already accounted for by

including it as a bosonic degree of freedom in the systemHamiltonian, see, e.g., [18, 19]. The remainder of the photonic spectral density in
the cavity isflat and actually suppressed below the vacuum value.
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If the system-bath coupling is sufficiently weak, BRW theory [16, 17] can be safely applied to derive amaster
equation for the systemdynamics [20, 21]. This approach relies on the first and secondBorn approximation,
which calculate the effect of the system-bath coupling up to second order perturbation theory and assume that
the bath state remains unmodified, i.e., the bath densitymatrix ρb is time-independent (and thermally
populated in the following), where ρ ρ ρ≃ ⊗t t( ) ( )total b. Additionally, since the decay of the bath correlations
( ω∼1 cut, see below) occurs on amuch shorter time scale than the dynamics caused by the interactionwith the
bath, theMarkov approximation is used, disregarding allmemory effects of the system-bath interaction. In the
interaction picture (denoted by a tilde, = + − +O O˜ e eH H t H H ti( ) i( )s sb b ), the systemdensity operator ρ̃ then evolves
according to

∫ρ ρ ρ∂ = − ′ ⊗ ′ϕ ϕ
−∞

t H t H t t t˜( ) Tr ˜ ( ), ˜ ( ), ˜( ) d , (5)t

t

b b
⎡⎣ ⎡⎣ ⎤⎦⎤⎦

where Trb denotes the trace over the bath degrees of freedom.
The bath-dependent part of the system-bath coupling is fully encoded in the bath correlation functions

between themodes onmolecular sites i and j, ϕ τ τ ρ= ∑ b b( ) Tr [ ˜ ( ) ˜ (0) ]i j k ik jk, b
†

b . It is independent of both i and j

for a commonbath, ϕ τ ϕ τ=( ) ( )i j,
com , while for independent baths, the off-diagonal terms vanish,

ϕ τ δ ϕ τ=( ) ( )i j i j,
ind

, . The autocorrelation function ϕ τ( ) can be expressed through the spectral density [22]

∫ϕ τ ω ω ω ω= + +ωτ ωτ∞ −{ }J n n( ) ( ) [ ( ) 1]e ( )e d , (6)
0

i i

where ω = −βω −n ( ) (e 1) 1 is the Bose occupation factor and β = k T1 B , with kB the Boltzmann constant andT
the temperature. In the high-temperature limit βω ≫ 1cut , it can be shown that ϕ τ ω∝ − t( ) exp{( )/4}cut

2 2 , i.e.,
the bath correlation time is ω∼1 cut.

We now evaluate equation (5)within the system eigenbasis. Before we proceed, we note that the common
approach of using frequency-independent Lindblad terms to describe dephasing is equivalent to neglecting the
strong coupling in the incoherent dynamics, i.e., to use only the uncoupled systemHamiltonian
ω ω+ ∑a a c cm i i ic

† † in the interaction picture on the right-hand side of equation (5).When themolecule-cavity
coupling is comparable to or faster than the decay of bath correlations Ω ω≳( )R cut , this is an invalid
approximation, and it is crucial to include the full systemHamiltonianwhen deriving themaster equation to
satisfy detailed balance [23]. This point was also stressed in a recent paper in the context of electronic strong
coupling [24], based on a phenomenologicalmodel of the system.

We thus proceed by expressing the systempart of ϕH (∝c ci i
† ) in terms of the dressed eigenbasis (where

ω∣ 〉 = ∣ 〉H a as a ) and inserting this expansion in equation (5). This leads to

∫∑ ∑ρ ϕ τ σ ρ σ τ∂ = +ω ω ω τ

=

∞ − +u u u u t˜ ( ) e ˜( ), d h.c ., (7)t

i j

N

p q r s
ij ip iq jr js

t
rs pq

, 1 , , ,
0

i( ) ipq sr sr ⎡⎣ ⎤⎦

where σ = ∣ 〉〈 ∣a bab , ω ω ω= −ab a b, and the sums over p, q, r and s include all system eigenstates. Furthermore,
= 〈 ∣ ∣ 〉u a c 0ia i

† give the overlaps between system eigenstates and vibrationalmode excitations and can be
chosen real. Finally, wemade the substitution τ′ = −t t . Inserting ϕ τ( ) from equation (6) leads to integrals of
the type

∫ τ πδ Δω Δω= ±Δωτ∞ ± −e d ( ) i P.V.( ), (8)
0

i 1

where P.V. denotes theCauchy principal value—weneglect these imaginary parts as they only induce small
energy shifts (Lamb shifts) that can be reabsorbed in the coherent dynamics, and arrive to

∑ ∑ρ ω σ ρ σ∂ = +ω ω

=

−{ }S u u u u t˜ ( ) e ˜( ), H.c. , (9)t

i j

N

p q r s

ij sr ip iq jr js
t

rs pq

, 1 , , ,

i( )pq sr ⎡⎣ ⎤⎦

with the bath noise-power spectrum

ω π ω ω ω
π ω ω ω= + ⩾

− − <S
J n

J n
( )

( )[ ( ) 1] 0
( ) ( ) 0

. (10)
⎧⎨⎩

For a commonbath, ω ω=S S( ) ( )ij
com , while for independent baths, ω δ ω=S S( ) ( )ij i j

ind
, . Note that

ω ω≡ =ω ω→ →+ −S S S(0) lim ( ) lim ( )0 0 is well-defined if
ω

ωω→
J

lim
( )

0 exists.

In the resultingmaster equation, the terms inwhich ωpq differs from ωsr oscillate as a function of time t,
which can lead to a violation of the positivity of ρ for long times. If the timescale τϕ of the bath-induced system
dynamics ismuch slower than the coherent dynamics, i.e., τ τ≫ϕ SC, these terms can be removed by averaging
themaster equation over a time short compared to τϕ, but long compared to τSC [25, 26]. The total bare-
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molecule width γ = 3.2 meV [6] presents an upper bound for the bare-molecule dephasing rate γ γ⩽ϕ , and
thus gives a lower bound for τ γ∼ϕ ϕ1 . As a consequence, only the secular terms ω ω=pq sr persist. This secular
approximation5 results in amaster equationwhere populations and coherences are decoupled.We note that the
secular approximation aids in the interpretation of the different terms that are obtained, but is not required and
indeed only used in some of the results shown in the following.

The secular terms are enumerated in table 1, which lists the states pq rs{ , } connected by transitionswith
frequency ωsr . For simplicity, we define and label rates associatedwith each transition frequency, which
correspond to twice the noise power spectrum evaluated at ωsr , such that γ ω= S2 ( )rs sr . These are ‘bare’ rates in
the sense that they do not contain the algebraic prefactors from the basis transformation. The factor of two is
included so that for the termswhere pq= sr, we obtain a standard Lindblad termwith rate γrs, i.e.

ω σ ρ σ γ ρ+ = σS t( ){ [ ˜( ), ] H.c. } [ ], (11)sr rs sr rs rs

where  ρ ρ ρ= − { }X X X X[ ]
1
2

,X
† † is a standard Lindblad superoperator. Positive frequencies ω > 0sr

correspond to phonon emissionwhere the system transitions from a higher- to a lower-energy state, while
negative frequencies ω < 0sr correspond to phonon absorption. As shown in table 1, we obtain secular terms
connecting the two polaritons (γ Ω= S2 ( )e R , γ Ω= −S2 ( )a R

6), terms connecting the polaritons with the dark
modes (Γ Ω= S2 ( 2)e R , Γ Ω= −S2 ( 2)a R ), and terms connecting states with the same energy (γ =ϕ S2 (0),
equal to the bare-molecule dephasing rate). The latter give pure dephasing for the polaritons ∣ + 〉, ∣ − 〉, but
produce coupling between populations and coherences for all dark states.

Thefinalmaster equations are obtained by using the properties of the basis transformationmatrix uia to
evaluate the algebraic prefactors ∑ u u u ui ip iq ir is (independent baths) and ∑ u u u ui j ip iq jr js, (commonbath) in

equation (9). Specifically, we use that i) the polariton-vibrationalmode overlaps are given by = ±±u
N

1

2
i ,

ii) that dark states are orthogonal to each other δ∑ =′ ′u u( )i id id d d, , and iii) that dark states are orthogonal to the
polaritons ∑ =u( 0)i id . Note that i and j in the sums aremolecule indices (not including the cavitymode), so
that δ∑ =u ui ip iq p q, is generally not true.

This procedure gives the final secularizedmaster equation for the density operator, given in the Schrödinger
picture below. For a commonbathwith ϕ τ ϕ τ=( ) ( )ij , wefind thatmany terms vanish because of the
orthogonality relations, giving

   ∑ρ ρ
γ

ρ
γ

ρ
γ

ρ γ ρ∂ = − + + + +σ σ
ϕ

σ ϕ
=+ −

+− −+Hi[ , ]
4

[ ]
4

[ ]
4

[ ] [ ], (12)t s
a e

p ,
pp

where  σ= ∑d dd is the projector into the dark-state subspace. The Lindblad terms  ρ[ ]X correspond to
incoherent excitation transfer between system eigenstates and are depicted schematically infigure 2(a). A
phonon of frequency ΩR may be emitted transferring an excitation from the upper polariton ∣ + 〉 to the lower

Table 1. List of the incoherent transitions induced by the
dephasing interaction, within the secular approximation. Each
line shows the label we give to the ‘bare’ rate γrs associatedwith
incoherent transitions at frequency difference ωsr . These rates
are equal to γ ω= S2 ( )rs sr . The last column indicates towhich
combinations of states pq rs, each rate applies. Here, the
polaritons are labelled as + and−, while the labels

′ ″ ‴d d d d, , , each indicate any of the −N 1dark states.

Label ωsr pq rs{ , }

γe ΩR +− − +{ , }

γa Ω− R −+ + −{ , }

Γe
Ω
2

R + ′+ − − ′
+ − ′ − ′ +

d d d d
d d d d

{ , }, { , }
{ , }, { , }

Γa
Ω−
2

R − ′− + + ′
− + ′ + ′ −

d d d d
d d d d

{ , }, { , }
{ , }, { , }

γϕ 0 ++ ++ −− − −{ , }, { , }
′ ″ ‴dd d d{ , }

5
The secular approximation is also sometimes called the rotating wave approximation, but should not be confusedwith the rotatingwave

approximation performed in the systemHamiltonian in equation (2).
6
The same γ γ,a e are obtained under strong classical driving of a single two-level system [27].
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polariton ∣ − 〉, with rate γ 4e . Phonon absorption occurs analogously, with characteristic rate γ 4a .
Furthermore, the polaritons undergo pure dephasingwith rate γϕ 4.We note that the factor of 1 4 in these
rates can be easily understood: the bare-molecule dephasing interaction (rate γϕ) is reduced by a factor of two
for the polaritons, which consists of an equal superposition ofmolecules and the cavitymode. Since the
interaction in the dressed basis couples each polariton not only with itself, but also with the other polariton,
the prefactors are reduced by another factor of two. Taking into account the spectral density at the energy
difference between the polaritonsmodifies the rates for transitions between different polaritons (giving γa and
γe instead of γϕ), but the prefactor of 1 4 remains. Finally, the last term in equation (12) corresponds to bare-
molecule dephasing for a common bath, but projected into the degenerate dark-state subspace (using
  ∑ =c ci i i

† ). Remarkably, for the case of a common bath, i.e., long-range bath phonons, the dark states
are completely decoupled from the polaritons and the bright state behaves identically to a single oscillator
interacting with the cavity field.

Turning to the case of independent baths, ϕ τ δ ϕ τ=( ) ( )ij i j, , we insteadfind

 ρ ρ
γ

ρ
γ

ρ∂ = − + +σ σ+− −+H
N N

ai[ , ]
4

[ ]
4

[ ] (13 )t s
a e

   ∑ ∑Γ ρ ρ Γ ρ ρ+ + + +σ σ σ σ− + + −( ) ( )
N N

b
2

[ ] [ ]
2

[ ] [ ] (13 )a

d

e

d
d d d d

∑Γ σ ρ σ σ ρ σ+ − +− + + −( )
N

c
4

[ , ] [ , ] H.c. (13 )a

d

d d d d

∑Γ σ ρ σ σ ρ σ+ − ++ − − +( )
N

d
4

[ , ] [ , ] H.c. (13 )e

d

d d d d

  ∑ ∑γ
ρ γ ρ+ +ϕ

σ ϕ
=+ −N

e
4

[ ] [ ], (13 )
p i

c c

,
pp i i

†

which now includes excitation transfer between the polaritons and dark states (Γa, Γe), driven by
phonons of frequency Ω 2R . While the individual terms are strongly suppressed by the prefactor N1
(with N ∼ 1012 in the experiments), excitation transfer into the dark states still occurs efficiently due to
the sum over −N 1 dark states d. For → ∞N , the total population transfer from the polaritons to the
dark states thus occurs with rates Γ 2a and Γ 2e , as shown in figure 2(b). On the other hand, pure
dephasing of the polaritons and direct transitions between them through absorption or emission of
phonons of frequency ΩR play a negligible role within this dephasing scenario, as their rates scale as

N1 . Additional terms couple between different polariton-dark state coherences (equations (13c), (13d)),
without affecting the populations. Finally, the second term in equation (13e) again corresponds to a
bare-molecule Lindblad dephasing term that has been restricted to act only within the degenerate dark-
state subspace. For → ∞N , equation (13) simplifies to

     ∑ρ ρ Γ ρ Γ ρ γ ρ∂ = − + + + ϕ− +Hi[ , ]
2

¯ [ ]
2

¯ [ ] [ ], (14)t s
a e

i

c ci i
†

where   = − ∑ σ± ±N
¯ 1

1 d d
is an averaged Lindblad superoperator inducing equal population transfer from a

polariton to all dark states. For largeN, the dark states thus act like a sink, and any population transferred to
them is trapped and does not further participate in the polariton dynamics.

Figure 2. Illustration of the different decay and dephasingmechanisms that emerge fromourmodeling for the two dephasing
scenarios: commonbath (panel (a)) or independent baths (panel (b)). The arrows indicate decay processes while wavy lines represent
elastic events that produce dephasing. The fuzzy halo around the dark states indicates excitation transfer and dephasing acting within
thismanifold.
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As is clear from the expressions for the different decay rates, ΩR is the parameter that controls the interaction
between the dressed excitation and the phonon bath.Hence the importance of these decoherencemechanisms is
dictated by the spectral density evaluated at ΩR or Ω 2R . This is in clear contrast towhat wewould obtain by
treating the interaction ϕH in the uncoupled basis. In that case, theMarkov approximationwould have resulted
in ‘standard’ Lindblad terms γ ρϕ ∑ ( )c ci i i

† (common bath) or γ ρ∑ϕ ( )i c ci i
† (independent baths). In both cases,

the dephasing interactionwould be totally controlled by just the zero-frequency limit of the spectral density,
resulting in an overestimation of the rates γa e, and Γa e, . This fact emphasizes the key importance of deriving
Lindblad terms in the strongly coupled basis when considering non-flat reservoirs [23].

Apart from the decay and dephasingmechanisms induced by the dephasing-type interactions, which
conserve the number of excitations, the excited statesmay decay through nonradiativemolecular decay and
cavity losses into the ground state ∣ 〉0 . These decay process, whichwe have neglected in the theory up to now,
could be describedwithin the same framework by dissipative couplingwith thermal baths (e.g., the photonic
modes outside the cavity). However, as the energy shifts induced by the strong coupling are small compared to
the transition frequency (Ω ω≪R m), we can include them through Lindblad terms for the bare cavity and
molecular vibrationalmodes. After removing nonsecular terms in the eigenstate basis, this gives newLindblad
termswith decay rates of γ κ+( 2 2)nr for the two polaritons and γnr for the dark states.We can nowobtain the
total decay rates by collecting terms that transfer excitations out of each state (i.e., excluding pure dephasing
terms), giving

Γ
γ κ γ

Γ
γ κ Γ γ

= + + = + + − ++ +
N

N N
a

Common bath Independent baths

2 2 4 2 2

1

2 4
(15 )c nr e i nr e e

Γ
γ κ γ

Γ
γ κ Γ γ

= + + = + + − +− −
N

N N
b

2 2 4 2 2

1

2 4
(15 )c nr a i nr a a

 Γ γ Γ γ Γ Γ= = + +
N

c
2

(15 )c
nr

i
nr

a e

where Γ+, Γ−, and Γ are the decay rates of the upper polariton, lower polariton, and dark states, respectively.
The intrinsic lifetimes for each state in the two bath scenarios are given by τ Γ= 1x x

b b.While the decay of the
polaritons is dominated by cavity losses (κ 2) for realistic parameters, the upper polariton does have a slightly
shorter lifetime than the lower polariton in both scenarios, as Γ Γ>e a and γ γ>e a. The exact amount of
asymmetry depends on the temperatureT andRabi splitting ΩR.We note that in contrast to the conceptionally
similarmodel for electronic strong coupling of Canaguier-Durand et al [24], ourmodel does not predict a
polariton lifetime that ismuch longer than the cavitymode lifetime.

3. Results

In the following, we apply our theoretical framework to the experimental results of Shalabney et al [6]. For the
vibrationalmode of the baremolecules, they report a linewidth of γ = 3.2 meV,with negligible inhomogeneous
broadening. This linewidth has contributions fromnonradiative decay and dephasing, γ γ γ= + ϕnr , which can
not be distinguished in the absorption spectrum. Although direct information about theweights of non-
radiative and dephasing channels is thus not available, dephasing is in general expected to provide a significant
contribution for vibrational transitions [14, 15]. Therefore, in our calculationswewill use a factor f [γ γ=ϕ f ,
γ γ= − f(1 )nr ] tomeasure the relative importance of the two channels. In this way, the factor η in equation (4),
which quantifies the strength of the system-bath coupling, is simply given by η γ π= f k T(2 )B 0 where

=T 3000 K.The cut-off frequency for the thermal bath of low-frequency rovibrational excitations is chosen as
ω = 6cut meV, corresponding to the range of low-frequency phononmodes in the system [6]. Finally, we use a
cavity loss rate of κ = 17 meV as estimated in [6] through fitting of the transmission spectrum in the strong
coupling regime.

We calculate the absorption spectra by introducing a weak driving term, ∼ +ω−H t a( ) e H.c.d
ti , which

coherently pumps the cavity mode. The density matrix in the steady state, ρss, can be calculated in the
frame rotating with the driving frequency ω. In this frame, Hd is time-independent, but the system
frequencies are shifted and the density matrix ρss depends on ω. The absorption spectrum is then obtained
as ωA ( ) ρ ω∝ aTr[ ( ) ].ss For the numerical implementation, we employ the open-source QuTiP
package [28].

Figure 3(a) depicts the theoretical absorption spectra for the parameters reproducing the experimental
situation, with Rabi splitting Ω = 20.7R meV, for the two possible dephasing scenarios analyzed in this work
(commonor independent baths). Different values of f are tested: f=0, f=0.5 and f=1. Both approaches coincide
in the limit f=0 (no dephasing), but their behaviour differs for non-zero f, as can be inferred from the different
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decay rates as rendered infigure 2. The Rabi splitting ismuch larger than the range of low-frequency vibrations
(Ω ω≫R cut) and, hence, all terms connecting levels with different energies (γ γ Γ Γ, , ,a e a e) are essentially zero.
Thewidths of the polaritons in the absorption spectrum (for → ∞N ) are simply given by

γ
κ γ γ κ γ=

+
+ = + −ϕ

±
f

2 4 2
(1

2
)

2
nr for a common bath, and γ

κ γ κ γ=
+

= + −± f
2 2

(1 )
2

nr for

independent baths.
This also implies that for both bath scenarios andwithin the experimental conditions reported in [6, 7], the

ensemble of vibrationalmodes behaves effectively as just a single collectivemolecular oscillator, the bright state,
coupled to the cavitymode. Consequently, the darkmodes are effectively decoupled from the systemdynamics
under external driving.We note here that the fit used to extract the cavity width κ from the experimental data in
[6] is performed under strong coupling (using a transfermatrixmethod). Thus, the change of linewidths
predicted by ourmodel would already be present in the observed spectra, and is consequently absorbed in the
extracted cavity linewidth. This unfortunately precludes a direct test of ourmodel based on the experimental
absorption data, for which the bare cavity linewidthwould need to be available.

Furthermore, it is interesting to note that in the case of individual baths, the dephasing contributions to the
polaritonmodes are completely suppressed, analogous to thewell-known suppression of inhomogeneous
broadening under strong coupling [29]. This can be understood by the fact that dephasing and inhomogeneous
broadening are closely related, corresponding respectively to temporal fluctuations or to a static distribution of
the transition energies.

Thedarkmodes could play a bigger role in a situationwith smallerRabi splitting, forwhich, in order to still
achieve strong coupling, the cavity losses alsoneed to be reduced as compared to the experiments (e.g., by using
thickermirrors). The resulting absorption spectra are shown infigure 3(b), for the sameparameters as infigure 3(a)
but nowwith κ = 1 meV and Ω = 6.5R meV. Inbothbath scenarios, a slight asymmetry betweenupper and lower
polariton is nownoticeable, as the emissionof phonons from theupper polariton γ Γ ω∝ +n( , ( ) 1)e e ismore likely
than the absorptionof phonons in the lower polariton γ Γ ω∝ n( , ( ))a a .However, as the involved transition
frequencies are smaller than the thermal energy k( B = =T T K25.9 meV for 300 ), the thermal occupation

ωn ( ) is significant and the rates for phonon emission and absorption are comparable. Furthermore, although
the phenomenology in the observed absorption spectra is quite similar in both dephasing scenarios, with a
reduction of the polariton linewidths for increasing dephasing f, the underlying physics are nowquite distinct.
This is demonstrated clearly when inspecting the population dynamics, shown infigure 4 for the case of the
upper polariton being initially excited. In both cases, the dynamics are dominated initially by the fast decay of the
upper polariton through cavity losses (rate κ 2, cf equation (15)). However, themore interesting aspect is the
dynamics within the excited subspace: for the commonbath, shown infigure 4(a), the dark states are completely
decoupled from the dynamics and population is only transferred between the polaritons. In contrast, in the case
of independent baths, shown infigure 4(b), the excited population is quite efficiently transferred from the upper
polariton to the dark states, resulting in a fast rise of the dark state population. The dark states subsequently
decay through nonradiativemolecular loss (γnr , cf equation (15)), which is smaller than the polariton loss rate.
We also note that the small but visible population transfer to the lower polariton only shows up becausewe show
results forN=100, not in the limit → ∞N (cf equation (14)).

Figure 3.Absorption spectra for the two possible dephasing scenarios as a function of f. In both panels the two sets of curves are offset
for a better visualization. In panel (a), the parameters used for the calculations are those reported in [6] (see text), whereas in panel (b),
the Rabi splitting and the cavity decay rate are reduced to Ω = 6.5 meVR and κ = 1 meV, respectively.
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4. Conclusions

In summary, by using a fully quantum frameworkwe have studied in detail the phenomenon of collective strong
couplingwhen an ensemble ofmolecular vibrationalmodes interacts with a cavity EMmode, as realized
experimentally in two recent papers [6, 7].We have demonstrated that dephasing-type interactions with a
thermal bath of backgroundmodes in such a systemhave to be treated beyond the usual Lindblad
approximation in order to represent the effects of the spectral density of bathmodes correctly.We have
investigated two ‘extreme’ scenarios for the bath, with either a commonbath for allmolecules, or independent
baths for eachmolecule. For the experimentally relevant parameters, we find that the darkmodes are almost
totally decoupled from the polaritons in both scenarios, and the bright state behaves almost like a single isolated
oscillator. Ourfindings thus suggest that this type of system is an ideal and simple platform to explore the
exciting possibilities of cavity optomechanics at room temperature.
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