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Abstract

We develop a quantum mechanical formalism to treat the strong coupling between an electromagnetic
mode and a vibrational excitation of an ensemble of organic molecules. By employing a Bloch—
Redfield-Wangsness approach, we show that the influence of dephasing-type interactions, i.e.,
elastic collisions with a background bath of phonons, critically depends on the nature of the bath
modes. In particular, for long-range phonons corresponding to a common bath, the dynamics of the
‘bright state’ (the collective superposition of molecular vibrations coupling to the cavity mode) is
effectively decoupled from other system eigenstates. For the case of independent baths (or short-
range phonons), incoherent energy transfer occurs between the bright state and the uncoupled dark
states. However, these processes are suppressed when the Rabi splitting is larger than the frequency
range of the bath modes, as achieved in a recent experiment (Shalabney et al 2015 Nat. Commun. 6
5981).Inboth cases, the dynamics can thus be described through a single collective oscillator
coupled to a photonic mode, making this system an ideal candidate to explore cavity optomechanics
atroom temperature.

1. Introduction

The field of cavity optomechanics explores the interaction between electromagnetic (EM) radiation and the
quantized mechanical motion of nano- or micro-oscillators [1-3]. Recent developments promise a rich variety
of applications such as precision mechanical measurements and coherent control of quantum states (see [4, 5]
for recent reviews). When the interaction becomes sufficiently large, coherent energy exchange between the
optical and mechanical degrees of freedom becomes possible and the system could reach the strong coupling
regime. Along this direction, a novel approach consists in coupling a cavity mode to a molecular bond vibration
[6, 7], which is in the ground state already at room temperature, without requiring any cooling. In order to
achieve strong coupling, this has to be done by using an ensemble of molecules. This phenomenon has common
ingredients with the collective strong coupling observed when electronic excitations of organic molecules
interact with cavity [8—10] or plasmonic modes [11], which has been studied extensively during the last years
(see [12, 13] for recent reviews).

In the strong coupling with an ensemble of vibrational modes, the cavity resonance couples to a collective
superposition of the molecular vibrations, the so-called bright state, forming hybrid states called polaritons. In
principle, all other superpositions of vibrational excitations (the so-called dark states) remain uncoupled.
However, within this setting, a thermal bath of low-frequency rovibrational modes, which normally only
introduces dephasing [14, 15], interacts with the vibrational excitations and may influence the system dynamics.
Itis an open question how the dephasing mechanisms affect the strongly coupled dynamics and what role the
dark states play. In particular, it is unknown whether the bright mode in such a system effectively behaves like a
single isolated oscillator, which would enable the direct application of protocols developed in cavity
optomechanics.

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Sketch of the model system. An ensemble of N molecules interacts collectively with a cavity mode of frequency w,. The cavity
is tuned to a molecular vibrational mode. The remaining rovibrational modes are introduced by either connecting all molecules to a
common bath (panel (a)) or by coupling each molecule with an independent bath (panel (b)). In both cases the harmonic bath is
characterized by a spectral density J (w).

In this paper, we present a fully quantum theory of the phenomenon of collective strong coupling of molecular
vibrations with a cavity mode. In contrast to classical transfer matrix calculations, which can be used to fit the
experimental spectra 6, 7] but only provide very limited information about the incoherent dynamics in the
system, our approach naturally incorporates all incoherent processes, in particular those induced by dephasing-
type interactions. We describe the system using a quantum-mechanical model of a single photon mode coupled
to an ensemble of harmonic oscillators representing molecular vibrations (the C=0 bond stretching mode of
polyvinyl acetate at an energy of 215 meV in the experiment [6]). In order to incorporate the coupling of the
molecular vibrations to low-frequency rovibrational modes, we assume that the oscillators are connected to
either a common or to independent phononic baths (see figure 1). We employ Bloch—Redfield-Wangsness

(BRW) theory [16, 17] to obtain master equations describing the system dynamics under strong coupling. The
final master equations only contain a few Lindblad terms, with rates determined by the product of (i) the bath
spectral density at the corresponding transition frequency and (ii) algebraic prefactors obtained from
transforming the system into its eigenstate basis. Using the specific properties of the system under study, we can
evaluate all these prefactors analytically, and are thus able to directly read off the population transfer rates
between the system eigenstates. This allows detailed insight into the system dynamics and, specifically, the role of
the dark states. Our results demonstrate that for large enough Rabi splitting, the bright state indeed behaves like a
singleisolated oscillator and the dark states play an almost negligible role. For the case of a common bath,
corresponding to long-range bath phonons, this is even true regardless of the Rabi splitting.

2. Theory

2.1. Coherent dynamics

We model the system as a set of N molecular vibrational modes coupled to a single electromagnetic (EM) mode in a
microcavity, as depicted in figure 1. The mirrors in the experiments [6, 7] are actually planar, and the photonic
modes form a continuum, with a dispersion relation depending on the in-plane momentum 12”. However, the
assumption of a single EM mode coupling to many molecules is justified when comparing the density of EM modes
with the molecule density in the experiment. For the jth transversal mode in a cavity of length L with background
refractive index n, the momentum perpendicular to the plane mirrorsis fixed to k; = jf”, so that the dispersion in

c

- [ - \2 -
terms of the (two-dimensional) in-plane wavevector kjis @ = — k||2 + (%) , (where k = |k;|). The 2D density
n

‘max

k
of EM modes with wavevector kjj < kpax is Npp = ﬁ / 27k dky = k,fm /(4r). Inserting the cavity mode
JT 0

dispersion gives a density of states with energy @ < @mayx of (here and in the following, weset 7 = 1)

D= (2 2
Nph_ 4”C2(a)max @ )) (1)

cjrm . .. . .
where w; = —]—. We assume that modes withj=1and ® < wy.x ® @, + g participate in the dynamics.

Taking the pailqrameters from the experiment of Shalabney etal [6] (n & 1.41, w; = 215 meV, 2 = 20.7 meV,
L ~ 2 um), this leads to an EM mode density of Ny, ~ 4 X 10° cm 2. In contrast, the reported molecular
densityis d ~ 8 X 10?! cm ™, givinga 2D molecular density of Ld ~ 2 X 10'® cm™>. There are thus on the order
of 10"* molecular vibrational modes coupled to each photonic mode, and our assumption is clearly justified.

Within the rotating wave approximation, i.e., neglecting processes that create or destroy two excitations, the
coherent dynamics of the system is then governed by the Hamiltonian:

2
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N N
H, = w.a'a + 2 wiclci + Z g (ac/ + a'c), (2)

i=1 i=1

where a is the annihilation operator for the cavity mode with frequency w,, and ¢; is the annihilation operator
of the optically active vibrational mode of molecule i, characterized by its frequency w; and its position 7.
The cavity-oscillator interaction is given by g;, which depends on the cavity electric field strength and the
change of the molecular dipole moment under displacement from the equilibrium position (see [6] for
details). For simplicity, in this work we assume a regular configuration in which all the molecules are
identical (w; = wy;, g; = g), as well as zero detuning (w. = wy,). Using a direct numerical implementation of
BRW theory, which works with arbitrary (but small enough) systems, we have explicitly checked that
orientational disorder (g;=g j) and inhomogenous broadening (w; = ®;) do notsignificantly affect the
results presented below.

We focus on the linear response of the system, so that we can restrict the treatment to the zero- and single-
excitation subspaces’. The N + 1singly excited eigenstates of H,are formed by: (i) two polaritons, | + ),
symmetric and antisymmetric linear combinations of the cavity mode a' |0), with the collective bright state of

the molecular excitation, |B) = %Zl oy x) = %(aT |0) + |B))andii) the so-called dark states,

N — 1 combinations of molecular excitations orthogonal to | B), which have eigenfrequencies ®,, and no mixing
with the photonic mode. The eigenfrequencies of the two polariton modes are w,, + g~/N, with Rabi splitting
Qg = 2¢+/N. Collective strong coupling emerges when Qy is larger than the losses of the system. We can
distinguish three types of loss mechanisms: cavity losses (rate k), non-radiative internal losses within the
molecules (rate y,.), and dephasing-type interactions. Spontaneous radiative decay is very slow (on the scale of

milliseconds) due to the low transition frequencies and can be safely neglected”.

2.2.Incoherent dynamics

We now turn to the description of the incoherent dynamics induced by the different loss mechanisms. Whereas
cavity losses and nonradiative internal molecular decay can be seen as pure decay channels and included as
constant Lindblad terms when analyzing the system dynamics, dephasing-type interactions must be treated in a
more detailed fashion, as we detail below. In the case analyzed in this work, these interactions are due to elastic
scattering of low-frequency rovibrational bath modes with the main vibrational modes involved in strong
coupling, described by the interaction Hamiltonian

N
Hy= Yclci Y du(bi + b). (3)

i=1 k

The spatial extension or localization of the bath modes determines the character of the coupling. In the
following, we focus on two limiting scenarios. In the first scenario, all the vibrational modes are coupled to the
same common bath (see figure 1(a)), characterized by delocalized phonons by, = by, with bath Hamiltonian
H™ = ¥, wyby{ by In the second scenario, each molecular vibrational mode is coupled to an independent bath
characterized by on-site phonons by, with bath Hamiltonian Hli“d = D Wik bﬂ;< b;. Inboth scenarios, we
assume that all molecules are identical (1 = Ay and wy = wy).

The frequently used approach of treating dephasing through a frequency-independent Lindblad
superoperator acting only on the vibrational modes is not valid in our case as, within the strong coupling regime,
the molecule-cavity coupling (frequency £2y) is much faster than the correlation time of the phononic
environment (the timescale on which bath correlations decay, i.e., within which the bath ‘forgets’ about state
changes). Instead, the influence of the background modes has to be taken into account in the dressed basis
obtained after diagonalizing the strong-coupling interaction. The bath is completely characterized by the
spectral density J; () = Y, 128 (w — i) (with J; (@) = ] (w) in our case). In the following, we assume an
Ohmic environment with a quadratic cutoff at frequency @

J (@) = qoetoro, @

where 7 is a dimensionless constant that determines the system-bath coupling strength.

We note that since the system Hamiltonian is quadratic in the bosonic modes {4, ¢;}, it can in principle be diagonalized without restriction
to any excitation subspace. This leaves most of the derivation presented in the following unchanged, but introduces additional prefactors
depending on the excitation numbers in the incoherent rates derived below. For simplicity, we thus allow at most one excitation.

Note that there is no Purcell enhancement of the spontaneous emission, as the effect of the cavity mode is already accounted for by
including it as a bosonic degree of freedom in the system Hamiltonian, see, e.g., [18, 19]. The remainder of the photonic spectral density in
the cavity is flat and actually suppressed below the vacuum value.




10P Publishing

NewJ. Phys. 17 (2015) 053040 J del Pino etal

If the system-bath coupling is sufficiently weak, BRW theory [16, 17] can be safely applied to derive a master
equation for the system dynamics [20, 21]. This approach relies on the first and second Born approximation,
which calculate the effect of the system-bath coupling up to second order perturbation theory and assume that
the bath state remains unmodified, i.e., the bath density matrix p, is time-independent (and thermally
populated in the following), where p,.; () ~ p () ® p,.Additionally, since the decay of the bath correlations
(~1/@cyt, see below) occurs on a much shorter time scale than the dynamics caused by the interaction with the
bath, the Markov approximation is used, disregarding all memory effects of the system-bath interaction. In the
interaction picture (denoted by atilde, O = ei(Hs+H)tQe=i(H+Hb)1) the system density operator 5 then evolves
according to

op() == [ [ 8,00, [ Hy(e), pl0) @ p, ] 5)

where Tr}, denotes the trace over the bath degrees of freedom.
The bath-dependent part of the system-bath coupling is fully encoded in the bath correlation functions

between the modes on molecular sites iand j, ¢; ; () = X Try [Eiz ()b i (0)py ). Itis independent of both iand j

for acommon bath, qﬁifjom () = ¢ (), while for independent baths, the off-diagonal terms vanish,
¢if]¥‘d (7) = 8;j¢ (r). The autocorrelation function ¢ (r) can be expressed through the spectral density [22]

¢(T) _ ‘/(;oo ](a)){[n((ﬂ) + l]e_i(m + n(w)eiwr}dw, (6)

where 1 (w) = (e#” — 1)7!is the Bose occupation factorand g = 1/kp T, with kg the Boltzmann constant and T
the temperature. In the high-temperature limit fw, > 1,it can be shown that ¢ (7) « exp {(—a)glt t?)/4},ie.,
the bath correlation timeis ~1/@y;.

We now evaluate equation (5) within the system eigenbasis. Before we proceed, we note that the common
approach of using frequency-independent Lindblad terms to describe dephasing is equivalent to neglecting the
strong coupling in the incoherent dynamics, i.e., to use only the uncoupled system Hamiltonian
w.a'a + ®,,Y; ¢ ¢; inthe interaction picture on the right-hand side of equation (5). When the molecule-cavity
coupling is comparable to or faster than the decay of bath correlations (£2g 2 @y ), thisis an invalid
approximation, and it is crucial to include the full system Hamiltonian when deriving the master equation to
satisfy detailed balance [23]. This point was also stressed in a recent paper in the context of electronic strong
coupling [24], based on a phenomenological model of the system.

We thus proceed by expressing the system part of Hy (xc] ¢;) in terms of the dressed eigenbasis (where
H(|a) = w,|a)) and inserting this expansion in equation (5). This leads to

N o0
0p = z Z /(; ¢ij(T)uipuiqujrujsel(mm_w“)H—mmr[ﬁrsﬁ(t), qu]d‘[+ h.c., (7)

i,j=1p,q,1,s

where 6,5 = |a)(b|, s = @, — wy,, and the sums over p, g, rand s include all system eigenstates. Furthermore,
iy = {a| ¢! |0) give the overlaps between system eigenstates and vibrational mode excitations and can be
chosen real. Finally, we made the substitution ¢ = t — . Inserting ¢ (7) from equation (6) leads to integrals of

the type
/oo etidotdr — 5 (Aw) + iP.V.(Aw_l)y (8)
0

where P.V. denotes the Cauchy principal value—we neglect these imaginary parts as they only induce small
energy shifts (Lamb shifts) that can be reabsorbed in the coherent dynamics, and arrive to

N
0.p = Z Z Si]-(caS,)uipuiquj,ujs{ei(“’i’q_(”“)t[msﬁ(t), (rpq] + H.c.}, 9)
1,j=1p,q,7,s

with the bath noise-power spectrum

S(w) = {ﬂ](a))[n(a)) +1] 20

A (—o)n(-0) w<0’ (10)

For a common bath, Si]c-"m (w) = S(w), while for independent baths, Sé“d (w) = 6;;S (w). Note that
S(0) = limy_¢+S (w) = lim,,_¢-S (w) is well-defined if lima,_,oM exists.
®
In the resulting master equation, the terms in which @ g differs from w,, oscillate as a function of time ¢,
which can lead to a violation of the positivity of p for long times. If the timescale 7, of the bath-induced system
dynamics is much slower than the coherent dynamics, i.e., 7y > 7sc, these terms can be removed by averaging
the master equation over a time short compared to 7,5, butlong compared to 7sc [25, 26]. The total bare-

4
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Table 1. List of the incoherent transitions induced by the
dephasing interaction, within the secular approximation. Each
line shows the label we give to the ‘bare’ rate y,; associated with
incoherent transitions at frequency difference wj,. These rates
areequalto y,, = 25 (wy ). The last column indicates to which
combinations of states pq, rs each rate applies. Here, the
polaritons are labelled as + and —, while the labels

d, d’, d", d” eachindicate any ofthe N — 1 dark states.

Label Wy {pg, rs}
% Qg (+- - +}
7 -Qp -+ +-}
L 2r [+d, d'+}, {d—, ~d'}
2 {+d,—d'}, {d—,d" +}
r e {~d, d'~}, {d+,+d'}
2 {=d, +d'}, {d+,d" - }
Y 0 {++, ++} (=== = }
{dd’, dudm}

molecule width y = 3.2 meV [6] presents an upper bound for the bare-molecule dephasing rate v, < 7,and
thus gives alower bound for 7 ~ 1 /y,. Asa consequence, only the secular terms @y = ;. persist. This secular
approximation’ results in a master equation where populations and coherences are decoupled. We note that the
secular approximation aids in the interpretation of the different terms that are obtained, but is not required and
indeed only used in some of the results shown in the following.

The secular terms are enumerated in table 1, which lists the states {pg, rs} connected by transitions with
frequency w,,. For simplicity, we define and label rates associated with each transition frequency, which
correspond to twice the noise power spectrum evaluated at a;,, such that y,. = 25 (@, ). These are ‘bare’ rates in
the sense that they do not contain the algebraic prefactors from the basis transformation. The factor of two is
included so that for the terms where pq = sr, we obtain a standard Lindblad term with rate y,, i.e.

S(wg){ [0:p(t), 6] + Hec. } = 1,,Ls, [p], (11)

1 . . .. .
where Ly [p] = XpXT — 3 {X X, p} is a standard Lindblad superoperator. Positive frequencies @, > 0

correspond to phonon emission where the system transitions from a higher- to alower-energy state, while
negative frequencies w;, < 0 correspond to phonon absorption. As shown in table 1, we obtain secular terms
connecting the two polaritons (y, = 25 (2g), 7, = 25 (-2 )°), terms connecting the polaritons with the dark
modes (I, = 25 (R2g/2), I, = 28 (—2r/2)), and terms connecting states with the same energy (y¢ = 25(0),
equal to the bare-molecule dephasing rate). The latter give pure dephasing for the polaritons | + ), | — ), but
produce coupling between populations and coherences for all dark states.

The final master equations are obtained by using the properties of the basis transformation matrix u;, to
evaluate the algebraic prefactors Y}, u;, u;, u; u;s (independent baths) and }; j UipUiqUjr U js (common bath) in

equation (9). Specifically, we use that i) the polariton-vibrational mode overlaps are given by u;, = +—,

ii) that dark states are orthogonal to each other (), u;su;s = 8,4 4'), and ii) that dark states are orthogonal to the
polaritons (}’; u;; = 0). Note that i and j in the sums are molecule indices (not including the cavity mode), so
that Y, u;, u;;, = 6, ,is generally not true.

This procedure gives the final secularized master equation for the density operator, given in the Schrédinger
picture below. For a common bath with (]5,-]» () = ¢ (7), we find that many terms vanish because of the
orthogonality relations, giving

. Ya Ye Yy
0p = =ilH p) + TLo, [p] + Lo o] + > Lo, lpl +7,L0I0) (12)
p=+-

where D = ), 6,4, s the projector into the dark-state subspace. The Lindblad terms L x [p] correspond to
incoherent excitation transfer between system eigenstates and are depicted schematically in figure 2(a). A
phonon of frequency £2; may be emitted transferring an excitation from the upper polariton | + ) to the lower

The secular approximation is also sometimes called the rotating wave approximation, but should not be confused with the rotating wave
approximation performed in the system Hamiltonian in equation (2).

6 . . .. .
The same y,, y, are obtained under strong classical driving of a single two-level system [27].
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Figure 2. lllustration of the different decay and dephasing mechanisms that emerge from our modeling for the two dephasing
scenarios: common bath (panel (a)) or independent baths (panel (b)). The arrows indicate decay processes while wavy lines represent
elastic events that produce dephasing. The fuzzy halo around the dark states indicates excitation transfer and dephasing acting within
this manifold.

polariton | — ), withrate y, /4. Phonon absorption occurs analogously, with characteristic rate y, /4.
Furthermore, the polaritons undergo pure dephasing with rate y, /4. We note that the factor of 1/4 in these
rates can be easily understood: the bare-molecule dephasing interaction (rate y ) is reduced by a factor of two
for the polaritons, which consists of an equal superposition of molecules and the cavity mode. Since the
interaction in the dressed basis couples each polariton not only with itself, but also with the other polariton,
the prefactors are reduced by another factor of two. Taking into account the spectral density at the energy
difference between the polaritons modifies the rates for transitions between different polaritons (giving y, and
7, instead of y,), but the prefactor of 1/4 remains. Finally, the last term in equation (12) corresponds to bare-
molecule dephasing for a common bath, but projected into the degenerate dark-state subspace (using
DY ¢/ ¢;D = D). Remarkably, for the case of a common bath, i.e., long-range bath phonons, the dark states
are completely decoupled from the polaritons and the bright state behaves identically to a single oscillator
interacting with the cavity field.

Turning to the case of independent baths, ¢ij (7) = 8¢ (1), we instead find

0 = =il Ho p) + 2L, [p) + 2L ) (13a)
= 3 (£alol + Laslo)) + - X (Laulel + £ailo]) (13b)
+% zd:( [64-p» Gas] = [G4ap, 0-a) + Hoc.) (13c)
+% d ([oapr 64] = Lo-apy o4l + H.c.) (13d)
+4y_ir 2 Laple) + 1, P Locrenle), (13¢)

p=t- i

which now includes excitation transfer between the polaritons and dark states (I, I;), driven by
phonons of frequency £2z/2. While the individual terms are strongly suppressed by the prefactor 1/N
(with N ~ 10'? in the experiments), excitation transfer into the dark states still occurs efficiently due to
the sum over N — 1 dark states d. For N — oo, the total population transfer from the polaritons to the
dark states thus occurs with rates I;,/2 and I,/2, as shown in figure 2(b). On the other hand, pure
dephasing of the polaritons and direct transitions between them through absorption or emission of
phonons of frequency €2z play a negligible role within this dephasing scenario, as their rates scale as
1/N. Additional terms couple between different polariton-dark state coherences (equations (13¢), (134)),
without affecting the populations. Finally, the second term in equation (13¢) again corresponds to a
bare-molecule Lindblad dephasing term that has been restricted to act only within the degenerate dark-
state subspace. For N — oo, equation (13) simplifies to

. I, I, .
o = =ilHs pl + S Lp-lp] + T Loilpl + 7, Y Loden ), (14)

1

where Lp, = >4 L,,. isan averaged Lindblad superoperator inducing equal population transfer from a

polariton to all dark states. For large N, the dark states thus act like a sink, and any population transferred to
them is trapped and does not further participate in the polariton dynamics.

6
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As s clear from the expressions for the different decay rates, €2y is the parameter that controls the interaction
between the dressed excitation and the phonon bath. Hence the importance of these decoherence mechanisms is
dictated by the spectral density evaluated at €2 or £2/2. Thisis in clear contrast to what we would obtain by
treating the interaction Hy in the uncoupled basis. In that case, the Markov approximation would have resulted
in ‘standard’ Lindblad terms TpLy, cle (p) (common bath) or Yo > Lt (p) (independent baths). In both cases,
the dephasing interaction would be totally controlled by just the zero-frequency limit of the spectral density,
resulting in an overestimation of the rates y, , and I; .. This fact emphasizes the key importance of deriving
Lindblad terms in the strongly coupled basis when considering non-flat reservoirs [23].

Apart from the decay and dephasing mechanisms induced by the dephasing-type interactions, which
conserve the number of excitations, the excited states may decay through nonradiative molecular decay and
cavity losses into the ground state |0). These decay process, which we have neglected in the theory up to now,
could be described within the same framework by dissipative coupling with thermal baths (e.g., the photonic
modes outside the cavity). However, as the energy shifts induced by the strong coupling are small compared to
the transition frequency (2 < @,,), we can include them through Lindblad terms for the bare cavity and
molecular vibrational modes. After removing nonsecular terms in the eigenstate basis, this gives new Lindblad
terms with decay rates of (,, /2 + «/2) for the two polaritons and y,,, for the dark states. We can now obtain the
total decay rates by collecting terms that transfer excitations out of each state (i.e., excluding pure dephasing
terms), giving

Common bath Independent baths
. N-1 I,
Fi:ﬁ Kk Fi=@+5+——e fe (15a)
2 2 4 2 2 N 2 4N
re=fr Kk pizlr K N=U e T (15b)
2 2 4 2 2 N 2 4N
: I+ 1;
rH=y, rp=y, + ”ZN . (15¢)

where I}, I'_, and I are the decay rates of the upper polariton, lower polariton, and dark states, respectively.
The intrinsic lifetimes for each state in the two bath scenarios are given by z° = 1/I'?. While the decay of the
polaritons is dominated by cavity losses (x/2) for realistic parameters, the upper polariton does have a slightly
shorter lifetime than the lower polariton in both scenarios, as I; > I and y, > y,. The exact amount of
asymmetry depends on the temperature T'and Rabi splitting £2z. We note that in contrast to the conceptionally
similar model for electronic strong coupling of Canaguier-Durand et al [24], our model does not predicta
polariton lifetime that is much longer than the cavity mode lifetime.

3. Results

In the following, we apply our theoretical framework to the experimental results of Shalabney et al [6]. For the
vibrational mode of the bare molecules, they report alinewidth of y = 3.2 meV, with negligible inhomogeneous
broadening. This linewidth has contributions from nonradiative decay and dephasing, y = 7, + ,, which can
not be distinguished in the absorption spectrum. Although direct information about the weights of non-
radiative and dephasing channels is thus not available, dephasing is in general expected to provide a significant
contribution for vibrational transitions [14, 15]. Therefore, in our calculations we will use a factor f[ Yp = fr,

7, = (1 — f)y] to measure the relative importance of the two channels. In this way, the factor 7 in equation (4),
which quantifies the strength of the system-bath coupling, is simply given by # = fy/(2zkg 1) where

Ty = 300 K. The cut-off frequency for the thermal bath of low-frequency rovibrational excitations is chosen as
®cy = 6 meV, corresponding to the range of low-frequency phonon modes in the system [6]. Finally, we use a
cavity loss rate of k = 17 meV as estimated in [6] through fitting of the transmission spectrum in the strong
coupling regime.

We calculate the absorption spectra by introducing a weak driving term, Hy (t) ~ ae™' + H.c., which
coherently pumps the cavity mode. The density matrix in the steady state, p, can be calculated in the
frame rotating with the driving frequency w. In this frame, H, is time-independent, but the system
frequencies are shifted and the density matrix p, depends on w. The absorption spectrum is then obtained
as A(w) x Tr[p, (w)a]. For the numerical implementation, we employ the open-source QuTiP
package [28].

Figure 3(a) depicts the theoretical absorption spectra for the parameters reproducing the experimental
situation, with Rabi splitting £2r = 20.7 meV, for the two possible dephasing scenarios analyzed in this work
(common or independent baths). Different values of fare tested: f=0, f=0.5 and f= 1. Both approaches coincide
in the limit f= 0 (no dephasing), but their behaviour differs for non-zero f, as can be inferred from the different

7
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Figure 3. Absorption spectra for the two possible dephasing scenarios as a function of f. In both panels the two sets of curves are offset
for a better visualization. In panel (a), the parameters used for the calculations are those reported in [6] (see text), whereas in panel (b),
the Rabi splitting and the cavity decay rate are reduced to 2 = 6.5 meV and k = 1 meV, respectively.

decay rates as rendered in figure 2. The Rabi splitting is much larger than the range of low-frequency vibrations
(£2g > o) and, hence, all terms connecting levels with different energies (y,, y,, I;, I.) are essentially zero.
The widths of the polaritons in the absorption spectrum (for N — oo) are simply given by

K+ Yar }/(/’ K f Y K+ Yar K Y
=— 4+ —=—+4 (1 — =)=foracommonbath,andy, = —— = — + (1 — f)~for
Ve 5 ) ( 2) 5 A > 5 1-1) 5
independent baths.

This also implies that for both bath scenarios and within the experimental conditions reported in [6, 7], the
ensemble of vibrational modes behaves effectively as just a single collective molecular oscillator, the bright state,
coupled to the cavity mode. Consequently, the dark modes are effectively decoupled from the system dynamics
under external driving. We note here that the fit used to extract the cavity width k from the experimental data in
[6] is performed under strong coupling (using a transfer matrix method). Thus, the change of linewidths
predicted by our model would already be present in the observed spectra, and is consequently absorbed in the
extracted cavity linewidth. This unfortunately precludes a direct test of our model based on the experimental
absorption data, for which the bare cavity linewidth would need to be available.

Furthermore, it is interesting to note that in the case of individual baths, the dephasing contributions to the
polariton modes are completely suppressed, analogous to the well-known suppression of inhomogeneous
broadening under strong coupling [29]. This can be understood by the fact that dephasing and inhomogeneous
broadening are closely related, corresponding respectively to temporal fluctuations or to a static distribution of
the transition energies.

The dark modes could play a bigger role in a situation with smaller Rabi splitting, for which, in order to still
achieve strong coupling, the cavity losses also need to be reduced as compared to the experiments (e.g., by using
thicker mirrors). The resulting absorption spectra are shown in figure 3(b), for the same parameters as in figure 3(a)
butnow with x = 1 meV and 2 = 6.5 meV. Inboth bath scenarios, a slight asymmetry between upper and lower
polariton is now noticeable, as the emission of phonons from the upper polariton (y,, I; « n (@) + 1)is morelikely
than the absorption of phonons in the lower polariton (y,, I, « n () ). However, as the involved transition
frequencies are smaller than the thermal energy (kg T = 25.9 meV for T = 300 K), the thermal occupation
n (w) is significant and the rates for phonon emission and absorption are comparable. Furthermore, although
the phenomenology in the observed absorption spectra is quite similar in both dephasing scenarios, with a
reduction of the polariton linewidths for increasing dephasing f, the underlying physics are now quite distinct.
This is demonstrated clearly when inspecting the population dynamics, shown in figure 4 for the case of the
upper polariton being initially excited. In both cases, the dynamics are dominated initially by the fast decay of the
upper polariton through cavity losses (rate k/2, cfequation (15)). However, the more interesting aspect is the
dynamics within the excited subspace: for the common bath, shown in figure 4 (a), the dark states are completely
decoupled from the dynamics and population is only transferred between the polaritons. In contrast, in the case
of independent baths, shown in figure 4(b), the excited population is quite efficiently transferred from the upper
polariton to the dark states, resulting in a fast rise of the dark state population. The dark states subsequently
decay through nonradiative molecular loss (y,,, cfequation (15)), which is smaller than the polariton loss rate.
We also note that the small but visible population transfer to the lower polariton only shows up because we show
results for N=100, not in thelimit N — oo (cfequation (14)).
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Figure 4. Population dynamics starting from the initially excited upper polariton | + ) for the two possible dephasing scenarios: (a)
common bath and (b) independent baths. The parameters are the same as in figure 3(b), with f= 0.5 and N = 100. Each panel shows
the upper polariton (+) and lower polariton (—) populations, as well as the total population in all dark states (DS), given by Tr(Dp).

4. Conclusions

In summary, by using a fully quantum framework we have studied in detail the phenomenon of collective strong
coupling when an ensemble of molecular vibrational modes interacts with a cavity EM mode, as realized
experimentally in two recent papers [6, 7]. We have demonstrated that dephasing-type interactions with a
thermal bath of background modes in such a system have to be treated beyond the usual Lindblad
approximation in order to represent the effects of the spectral density of bath modes correctly. We have
investigated two ‘extreme’ scenarios for the bath, with either a common bath for all molecules, or independent
baths for each molecule. For the experimentally relevant parameters, we find that the dark modes are almost
totally decoupled from the polaritons in both scenarios, and the bright state behaves almost like a single isolated
oscillator. Our findings thus suggest that this type of system is an ideal and simple platform to explore the
exciting possibilities of cavity optomechanics at room temperature.
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