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Abstract
A single chirped few-femtosecond pulse can be used to control and image coupled electron-nuclear
dynamics. Using full ab initio simulations of the simplestmolecule, H ,2

+ as a prototype target, we show
that for intermediate values of the chirp, interference between sequential and direct contributions
enables significant control over ionization yields, evenwhen taking into account the effective
decoherence introduced by nuclearmotion and the presence of an electronic continuum. For larger
values of the chirp, the single chirped pulse reproduces a classical pump–probe setup, with the chirp
parametermapping an effective time delay between the pumping and probing frequencies of the pulse.
After demonstrating this numerically, we present a full analytical solution for the two-photon
ionization amplitudes that provides an intuitive analogy between themolecular dynamics induced by
a single chirped pulse and a traditional pump–probe setup.

1. Introduction

Attosecond science aims to dynamicallymodify light–matter response at the electronic level acting at its intrinsic
time scale ofmotion [1, 2]. In pursuing this goal, worldwide efforts to improve sources of ultrashort light pulses
havemade possible the generation of attosecond-scale x-ray andXUVpulses using free-electron lasers (FELs) [3]
and high-order harmonic generation techniques [4–6]. These sources are nowadays capable of providing bright
and intense pulses with a high degree of coherence in order to image and even guide electronmotion on its
natural time scale in atoms andmolecules [7]. One of themost successful strategies to track electron dynamics to
date uses a pump–probe setup combining an attosecond x-ray or XUVpulse to excite or ionize the system,
followed by a femtosecond IR probe to retrieve an image of electronic processes in time or to drive the reaction
[8, 9]. Recent experiments at the Linac Coherent Light Source FEL have demonstrated coherent control over the
ultrafast Coulomb explosion of N2

2+ using x-ray and IR pulses [10]. Similar experiments combining x-rays with
optical-frequency pulses were also successfully performed to explore ultrafast dynamics inmore complex
molecular targets [11, 12]. The key to access electron dynamics is the availability of attosecond time resolution
in these schemes, rather than the production of ultrashort pulses. This has been proven, for instance, in
experiments performed at FERMI that have demonstrated howphase-controlled femtosecond pulses (few tens
of femtoseconds) in a two-color scheme can achieve control and chemical specificity with temporal resolution as
short as 3as [13].

In typical experiments, attosecond pulses are not producedwith a flat spectral phase (i.e. as transform-
limited pulses), but have an intrinsic chirp such that different frequencies within the pulse arrive at different
times. This chirp can be characterized andmanipulated using dispersive optical elements [14, 15], withmost
existing applications using dispersion compensation in order to generate transform-limited pulses.However, by
controlling the relative arrival times of different frequencies, the chirp could also be used as a control knob to
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achieve sub-femtosecond time-resolved images and control of electron dynamics. Earlier theoretical and
experimental works in atoms established that two-photon absorption rates could bemanipulated bymodifying
the spectral phase of an exciting femtosecond laser pulse, butwith themaximumyield always corresponding to
transform-limited pulses [16]. However, subsequent investigations, also using atomic targets, showed that the
presence of resonant states can break this limit and that controlling the spectral phases allows one to attain larger
two-photon excitation rates even though the peak intensity decreases [17]. Thesefindings raised the question of
whether transform-limited pulses are a prerequisite for attosecond science. A theoreticalmodel applied to a two-
level system already showed that an attosecond pump–probe setup using chirped pulses can provide the same
temporal resolution as a scheme using transform-limited pulses [18].More recent simulations in atoms using
second-order perturbation theory have captured the carrier-envelope phase and chirp dependencies of electron
angular distributions uponmultiphoton ionization of an atomwith a single pulse [19, 20], thus demonstrating a
certain degree of control over electronmotion. Analogous applications inmolecules could open new avenues to
manipulate the outcome of chemical reactions, but face the challenge of dealingwith nuclearmotion coupled to
electronic dynamical processes. Chemical reaction control has already been demonstrated by employing intense
femtosecond IR pulses [21, 22] distorting themolecular potential.More recent studies have shown that by
chirping these intense IRfields, it is possible to achieve quantum control ofmolecular photodissociation of the
hydrogenmolecular ion [23, 24]. However, we here focus on control schemeswhere themolecular potential
remains unaffected, i.e. on an approach similar to previous experiments using chirped femtosecond pulses with
optical frequencies tomanipulatemultiphoton excitation and ionization ofmolecules [25, 26].We recently
demonstrated that a single chirpedUVpulse can be employed to retrieve time-resolved images ofmolecular
wave packets with attosecond resolution, providing an alternative to the long-awaitedUV-pump/UV-probe
attosecond schemes [27]. In the currentmanuscript, we expand on this idea and show that chirped attosecond
pulses provide a versatile tool to both probe and control coupled electron-nuclear dynamics inmolecules.
Specifically, we provide a detailed analysis of chirped-pulse and nuclear decoherence effects in ultrafast
molecular processes triggered in the simplestmolecule, the hydrogenmolecular ion H .2

+ Wewill discuss the use
of a simple sequential approximation, and its connection to the formally exact time-dependent perturbation
theory expressions, tomodel the action of the single pulse as a pump and probe tool. The hydrogenmolecular
ion provides a benchmark target to investigate correlated electron-nuclearmotion, as it allows for a full-
dimensional quantummechanical treatment beyond the Born–Oppenheimer approximationwithin current
computational capabilities.

Themanuscript is organized as follows. In section 2, we first introduce our numerical implementation to
describe the ultrafast dynamics induced in the hydrogenmolecular ion by using ultrafast chirped pulses.We
then discuss time-dependent perturbation theory, which allows us to obtain closed-form expressions for two-
photon ionization amplitudes within the perturbative limit. Section 3 discusses the effect of nuclearmotion on
chirp-controlled total ionization yields.Wefirst treat themolecule within thefixed-nuclei approximation, in
which it effectively behaves like an atom. Evenwithin this limit, we find significant differences between
photoionization, inwhich the final states present a continuum, and excitation to a single well-defined state.We
then treat nuclearmotion during the pulse and explicitly showhow this washes outmost of the coherence effects
found forfixed nuclei, at least when looking at integrated quantities such as the total ionization-dissociation
yield. In section 4, we study energy-resolved observables, focusing on the dynamical aspects, i.e. thewave-packet
motion encoded in thefinal ionization amplitudes.We demonstrate how to retrieve attosecond time-resolved
images by tracing energy-differential ionization yields and provide the formal derivation of the analytical
expressions to compute the amplitudes within the time-dependent second order perturbation theory assuming
Gaussian-shaped finite pulses.

2.Methodology

2.1. Time-dependent Schrödinger equation (TDSE)
The time-dependent wave functionΦ(t, r,R) that describes themolecular system subject to pulsed radiation is
solution of the TDSE

t
t H t tr R r Ri , , , , , 1

¶
¶

F = F( ) ( ) ( ) ( )

where r andR stand for the electronic and nuclear coordinates, respectively, and t is the time.We use atomic
units unless otherwise stated. The theoretical description of the hydrogenmolecular ion has been achieved in
previousworks employing cylindrical [28, 29] or prolate spheroidal coordinates [30–34]. For the numerical
respresentation of themolecular wave function, we here employ a single-center expansion using spherical
harmonics, Y rl

m( ) to treat the angular degrees of freedomof the electron and a discrete variable representation
combinedwith afinite elementmethod (DVR) for the radial part of both the electronic (fi(r)) and nuclear
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(χj(R)) components of thewavepacket.However, different fromourpreviously employed spectralmethodsusing a
single-center expasion [35, 36], in order to represent the coupled electron-nuclear dynamics,wenowuse adirect
basis expansionof thewave functionwithout relyingon theBorn–Oppenheimer (adiabatic) approximation, such
thatnon-adiabatic couplings are implicitly included.We restrict the presentwork tofixed-in-spacemolecules, such
thatwe canomit the rotationalmotionof thenuclei, and the expansion for the time-dependentwave function reads:

t R
rR

a Y r r Rr, ,
1

. 2
i j l m

i j lm l
m

i j
, , ,

, ,å f cF =( ) (ˆ) ( ) ( ) ( )

The fullHamiltonian,H(t), can bewritten as the sumof a time-independentHamiltonian describing the isolated
molecule and a time-varying potential induced by the laser pulse,H(t)=H0+V(t). The light interaction term,
V(t), is treatedwithin the dipole approximation, which neglects the spatial dependence of the electromagnetic
field over the size of themolecule. This approximation remains valid for thewavelength rangewithin the XUV
region here employed. The laser-molecule term can thus bewritten, in the length gauge, as the product of the
electronic coordinates and the electric field,V t tr E .=( ) · ( ) In order to test numerical convergence of the
method [37], we have checked that simulationswithin the velocity gauge, where the interaction term is given by
the electronicmomentum and the vector potential of the pulse,V(t)=p·A(t), give the same results as in length
gauge for the basis sets employed here. The expressions that define the electromagnetic field corresponding to a
frequency-chirped pulse are provided in section 2.3 togetherwith a time-frequency analysis. After the action of
the radiation source, the resulting scatteringwave function that defines thefinal quantum state of themolecule
at a given energyE is calculated from the time-propagatedwave packet by solving the time-independent
Schrödinger equation using a exterior complex scaling of both the electronic and nuclear coordinates to impose
the outgoing boundary conditions that define the half-collision problem [38]

E H tr R r R, , , , 30 sc- Y = F[ ] ( ) ( ) ( )
whereH0 is theHamiltonian of themolecule in the absence of external field. The extraction of the ionization
amplitudes, total and differential in energy sharing and ejection angles for protons and electrons, can be achieved
by employing a surface integral formalism as described in previous works for the three-body break-up problem
in atoms [38, 39]. A thorough description of this numerical approach, including the technical implementation
employing open-source SLEPc libraries for the diagonalization procedures [40, 41], and computational details,
is provided elsewhere [37].

2.2. Time-dependent perturbation theory
For the description of a two-photon process resulting from the interactionwith a relatively low-intensity laser
pulse, an alternative to the direct solution of the TDSE is the use of second-order time-dependent perturbation
theory, with the correspondingmolecular wave packet tI

2Y ñ∣ ( )( ) given by:

t t V t a
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where gY ñ∣ is the ground (or initially prepared) state of themolecule with energyωg.V tI ¢ˆ ( ) is the driving operator
in the interaction picture,V t V te e ,I

H t H ti i0 0= -ˆ ( ) ( ) withV(t) in velocity or length gauge as previously defined.
The ionization amplitude corresponding to afinal scattering state fY ñ-∣ with total vibronic energyEf is obtained
by projecting it into the second ordermolecular wave packet

C t , 5f f I
2 2= áY Y ¥ ñw -∣ ( ) ( )( )

which explicitly results in a double integral in time and a sumover all the vibronic eigenstates (m) of the target
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whereΔωmg=ωm−ωg,Δωfm=ωf−ωm, andωm is the energy of statem.μ stands for the corresponding
dipole operator and F(t) for the electric field E(t) or vector potentialA(t), depending on the gauge of choice. For
some specific pulse shapes (such asGaussian pulses), this double integral in time can be performed analytically
evenwith chirped pulses to obtain an expression that separates the result into a ‘shape function’ that only
depends on the involved frequencies, and target-dependent products of dipole transitionmoments, as it is
formally demonstrated in section 4 of the presentmanuscript. For thewavelengths and laser intensities here
employed, we have checked that the computed full-dimensionalmolecular wave packets and amplitudes are
identical within TDPT and by solving the TDSE. The use of TDPT, aswe show in the following sections, is
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particularly convenient to truncate our simulations and to establish simplemodels to gain deeper insights on the
underlying physicalmechanisms that governmolecular dynamics.

2.3. Chirped pulses
The electromagnetic fieldE(t) of a chirpedGaussian pulse can bewritten as [18, 42, 43]

E t E F t t
1

2
exp i c.c., 7max f= +( ) ( ) ( ( )) ( )

withmaximumamplitude E E 1 ,max 0
2 1 4h= +( ) aGaussian envelope F t exp t

T2

2

2= -
h( )( ) ( ) and assuming

linearly polarized light. Here, η is the chirp parameter and the chirp-dependent pulse duration is given by
T T 1 .0

2h h= +( ) The temporal phase is

t t
T

t
2

, 80 2
2f w

h
h

= +( )
( )

( )

with the corresponding instantaneous frequencyω(t)=df(t)/dt changing linearly in time.Note that, for a
more consistent definitionwith respect to the literature, the sign of η is reversedwith respect to [27]. For
unchirped pulses (η=0), E0 is the peak field amplitude,T0 defines the duration of the pulse (FWHMof thefield
envelope isT T2 log 4FWHM 0= ), andω0 is the carrier frequency. For the given parametrization, adding a chirp
( 0h ¹ ) corresponds to stretching the same frequencies contained in the pulse over a longer duration, such that
the duration of the pulse increases and the peak amplitude decreases. At the same time, the spectral density
E 2w∣ ˜( )∣ remains unchanged [44] (under the assumption that positive- and negative-frequency contributions do
not overlap, i.e. that the pulse bandwidth does not extend to zero frequency), where

E E E , 90 0*w w w w w= - + ++ +˜( ) ˜ ( ) ˜ ( ) ( )

E
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is the Fourier transform,with spectral phase given by

T
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An illustration of the chirped pulses employed here is shown infigure 1. The left column shows the
electromagnetic field as a function of time for up-chirped (panel a, η>0), unchirped (b, η=0) and down-
chirped (c, η<0) pulses. The reference transform-limited pulse, i.e. equation (7) evaluated at η=0, is plotted
infigure 1(b), and also (gray full line) infigures 1(a) and (c). Themiddle columnpanels, (d)–(f), offigure 1 show
the squared amplitude and phase of their corresponding Fourier transform, wherewe can see that all pulses
share the exact same energy distribution butwith different quadratic (frequency-chirped) phase. Finally, in the
rightmost column, figures 1(g)–(i), we plot the correspondingWigner distributions, i.e. the time-frequency
analysis [45, 46], for themost up-chirped pulse with η=10 (panel (g)), the transform limited pulsewith η=0
(panel (h)) and themost down-chirped pulsewith η=−10 (panel (i)). TheWigner distributions represent the
frequency components of the pulse in time. Through these plots, we can easily see that for the unchirped pulse
(panel (h)), all frequencies will simultaneously reach themolecular target. For the up-chirped pulses (panel (g)),
the lower frequencies interact with themolecule at earlier times than the higher ones, while the opposite applies
for the down-chirped pulses (panel (i)).

3. Chirp-enhanced ionization yields

Manipulation of two-photon absorption rates by pulse shaping has been experimentally realized in atoms
[16, 47] and crystals [48] using femtosecond IR pulses. There, a proper choice of the spectral phase favors two
specific resonant transitions enhancing excitation into a particular state. In the current case ofmolecular
photoionization using significantly shorter XUVpulses, the physical scenario is quite different. On the one
hand, ionization implies a continuumoffinal electronic states, thus decreasing the energy selectivity of the
second photon absorptionwith respect to excitation.On the other hand,molecules, and in particular light
molecules, introduce the nuclear degrees of freedom as a source of additional broadening aswell as decoherence.
Consequently, the interference patterns previously described for atomic excitation [49], due to interference of a
resonant and a non-resonant two-photon path, are strongly suppressed aswe discuss in the present section.
In addition, the use of broadband ultrashort pulses induces correlated dynamics ofmolecular wave packets
containing a coherently populatedmanifold of vibrational and electronic states. This dynamics can be captured
using chirped pulses, as we demonstrate in section 4.
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Wehave previously demonstrated the possibility ofmanipulating two-photonmolecular ionization using an
attosecond chirpedUVpulse [27].We here focus on unraveling the underlying physics governingmolecular
dynamics triggered by chirped pulses in order to disentangle the role of electron and nuclear dynamics.Wefirst
workwithin the fixed-nuclei approximation, in whichmolecules behave similar to atoms, and investigate the
two-photon single ionization yield of H .2

+ Figure 2(a) shows a scheme of the ionization process: the H2
+

molecule, initially in its ground state, interacts with an ultrashort pulse with a central frequency ofω0=0.6au,
between the two lowest excited states of themolecule. At this frequency, ionization only occurs after two-photon
absorption. The ionization yield is plotted infigure 2(b) as a function of the η parameter that accounts for the
spectral chirp as defined in equation (7). Positive (negative) values correspond to up-chirped (down-chirped)
pulses, respectively. The reference unchirped pulse has a duration ofTFWHM=450 as and a peak intensity of
I=1.1×1013W cm−2. As shown infigure 1, we keep the pulse spectrum constant for different chirp
parameters η. As shown infigure 2(b), the ionization yield is strongly enhanced for up-chirped pulses, where
lower frequencies arrive earlier in time than higher frequencies. Themaximumvalue is obtained for η≈1.25,
while higher values of η lead to oscillatory behavior about a limiting value. These oscillating patterns were also
observed in two-photon excitation of atoms [49] and shown to be the consequence of the interference between
direct and sequential (resonant) two-photon contributions. The direct path corresponds to an off-resonant
process where both photons are absorbed quasi-simultaneously and ismaximized for transform-limited pulses,
while the sequential path is associated to the amplitude resulting from two resonant one-photon transitions to
and froman intermediate excited state [17, 49]. The relevant intermediate state in the current case is the first
excited state of themolecule, 2pσu, which has the largest value for the dipole coupling at the equilibrium
internuclear distance. In up-chirped pulses, ionization is thus dominated by the resonant contribution, while
only the direct process contributes in strongly down-chirped pulses.

Whilemolecular photoionizationwithin the FNA still shows interferences between the two possible
paths, they aremuchweaker than in atomic excitation, which involves transitions between bound states with

Figure 1. Left column: electromagnetic field as a function of time for up-chirped (a), unchirped (b) and down-chirped (c)pulses. The
transform limited pulse ( 0h = ) is also included as a faint gray line in (a) and (c) for reference, and corresponds to an unchirped pulse
ofTFWHM=450 as durationwith 1.1×1013W cm−2 of laser intensity andω0=0.6 au of central frequency. Panel (a) shows the up-
chirped pulses definedwith η=5 (red) and η=10 (blue). Panel (b) shows the Fourier-transform limited pulse. Panel (c) shows the
down-chirped pulses definedwith η=−5 (red) and η=−10 (blue).Middle column: Fourier transform (amplitude and phase) of
the electromagnetic fields on the left. Right column:Wigner distributions for the vector potential (time-frequency plots) for the pulses
definedwith η=10 (g), η=0 (h) and η=−10 (i).
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well-defined energies. This suppression is due to the integration over the energy of the electron in the final
ionization continuum. This can be observed infigure 2(c), which shows the chirp-dependent ionization yields
resolved by electron energyEf. For afixed value ofEf (horizontal cuts in thefigure), the oscillations are very
apparent and do not decay as η is increased.However, integration over Ef averages over out-of-phase oscillations
and thus effectively suppresses them. In fact, the oscillations in the integrated yield forω=0.6 au are only visible
because the ionization spectrumhas an abrupt lower cut off atEf=0, such that the oscillations do not average
away completely. This is confirmed infigure 2(d) and (e), which show the ionization yields corresponding to
identical pulses but centered atω0=0.75 au. Themaximum in the ionization probability upon two-photon
absorption now lies at higher photoelectron energies, such that the oscillations in the photoelectron energy
distributions progressively vanish before reaching the Ef=0 limit. Thus, the integration over energywashes out
the oscillations in the total ionization yield, shown infigure 2(d). This demonstrates that the attenuation in the
amplitude of the oscillation patterns with respect to previous observations in atomic excitation is simply due to
the photoionization process, and does not depend on details of themolecular structure. Indeed, the fact that
these results are obtainedwithin the FNA implies that these conclusions also apply for atomic photoionization.

By solving the full-dimensional TDSE including nuclearmotion, we next show that the couplingwith
nuclear degrees of freedom introduces additional decoherence in the picture described above. Figure 3(a) shows
a comparison of the solution of the TDSEwithin the FNA (gray full line) and including the correlated electron
and nuclear degrees of freedom (black full line).We again use the reference pulse centered atω0=0.6 au. In the
ab initio full-dimensional approach, the enhancement of the ionization yield for positively chirped pulses
remains, with an order-of-magnitude enhancement compared to the fully off-resonant limit ( 0h � ).

Figure 2. (a) Schematics of the two-photon absorption process. Energetics of the problemwith the potential energy curves for the
ground state of H2

+(1sσg)molecule in black, the excited states ofσu symmetry in blue and theCoulomb explosion potential inmaroon.
The energy bandwidth of the pulses employed is plotted in an orange shadowed area in the regionwhere the one-photon absorption
occurs, centered at 0.6 au and covering an approximated energy range 0.4–0.8 au. (b)–(e)Results for the TDPTmodel for the two-
photon single ionization of H2

+within the FNA (as explained in the text). (b) and (d)Total ionization yields as a function of the chirp
parameter η for pulses withω0 of 0.60 and 0.75 au, respectively. (c) and (e)Corresponding electron energy differential ionization
yields.
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However, themaximum enhancement for positive η is slightly reduced compared to FNA, and the oscillating
pattern vanishes and is replaced bymonotonic decaywith η. These features can be understood from the fact that
there is no longer awell-defined sequential path through a single intermediate state, as all excited states in H2

+

are purely dissociative and thus form a continuumof vibrational states. Energetically, there is always an
intermediate resonant state, even if it is stronglymodulated by the Franck–Condon overlap from the initial state
and theR-dependent dipole transitionmoment. Equivalently, this can be understood as the excitation of a
nuclear wavepacketmainly in the 2pσu intermediate state in the sequential pathway, with the nuclei quickly
accumulatingmomentumwhilemoving apart before the second photon is absorbed. This also explains the
decrease of the ionization yield for large ηwith respect to the FNA approximation, as the ionization potential
increases at larger internuclear distances, as seen infigure 2(a).

The key role of the nuclear dynamics associated in the resonantly excited electronic states is also confirmed
by the fact that the ionization probability remainsmostly unchanged for the down-chirped pulses, i.e. in the off-
resonant limit where both photons are absorbed quasi-simultaneously and nuclearmotion is expected to play a
minor role. To further investigate this behavior, infigure 3(b), we show the total ionization probabilities for H2

+

when artificially increasing the nuclearmassM. AsM is increased, the off-resonant limit obtained in down-
chirped pulses remains unaffected, while the attenuation due to nuclearmotion for positive values of η quickly
disappears. For very largemasses, the ionization yields approach the limit given by the FNA, recovering the
signature of the interference between two-photon paths. However, even for an effectivemass 1000 times larger
than in H ,2

+ the oscillation is smoothed out compared to the FNA. For computational simplicity, theM-
dependent yields are obtainedwithin second-order TDPT, equation (6), with the sumover intermediate states
reduced to the vibrationalmanifold associated to the 2pσu electronic state, which provides the dominant
contribution for this specific pulse. The validity of this truncationwithin the FNA is explicitly shown in
figure 3(a) by including only the 2pσu intermediate state in the sum in equation (6) (square symbols) or using a
sumover all intermediate states (circles), with both expressions giving almost identical results to the solution of
the full TDSE (gray full line).

While nuclearmotion is thus seen to play an important role in chirp-controlled two-photon ionization, the
insight gained about themolecular dynamics from the total ionization yield is limited.Much richer information

Figure 3. (a)Two-photon ionization yield as a function of the chirp parameter η forfixed nuclei approximation (FNA in gray) and full
dimensional calculations (black full line). Symbols correspond to the time-dependent perturbation theory (TDPT) results, expression
in Eq. (6), within thefixed nuclei approximation (FNA): including all intermediate states (circles) and reducing the sum to the first
excited state (square symbols). (b)TDPTmodel using different nuclearmasses indicated in the legend.
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can be obtained by studying the energy-differential ionization yields, which have been proven as a reliable tool to
understand time-resolvedmotion of excited and ionizedmolecules in analogous gas-phase experiments
employing pump–probe schemes [7, 50].

4. A single chirpedUVpulse as an alternative to pump–probe setups

In the following, we explore the energy-differential ionization probabilities for different chirped pulses, and
discuss how this can be used to emulate aUV-pumpUV-probe setup using two-photon absorption from a single
pulse [27]. The basic idea is that the chirp parameter encodes an effective time delay between different
frequencies within the pulse. By appropriately choosing the frequency components of the pulse to coincidewith
specific transitions within the desired pump–probe sequence, we can extract a time-resolved picture of the
dynamics by changing the chirp parameter. In our specific case, the (transform-limited) 450as pulse centered at
ω0=0.6 au is resonant with the vertical transition from the ground to thefirst electronic excited state in its
lower frequency range (∼0.3–0.6 au), while the higher-frequency components provide sufficient energy to
overcome the ionization potential from the first excited state. Therefore, up-chirped pulses (η>0)first create a
vibronic wave packet in the electronically excited state that evolves in time until the higher frequencies reach the
target. The goal is then to trace the time evolution of the excitedwave packet bymeasuring the ionization signal
for different values of the chirp parameter η. Figure 4 shows the two-photon ionization probability as a function
of the nuclear (NKE in x-axis) and electronic (EKE in y-axis) kinetic energy release for different chirped pulses.
In the off-resonant limit (down-chirped pulses with η<0), the energy distribution of the photofragments
smoothly varies with η and resembles that obtained for the unchirped reference pulse (η=0), but with an
overall decrease of the total ionization signal (as explained in the previous section). For the up-chirped pulses,
however, we observe the appearance of a peaked structure, which is still distinguishable in theNKEdistribution
after integration over photoelectron energies (shown in the lowest rowoffigure 4). The appearance of a double
peaked structure is indeed the signature that we are probing coherently excitedmolecular dynamics.

Wefirst extract the accurately computed time-evolvingmolecular wave packet created in the excited
molecule upon the interactionwith three different pulses, with chirp values of η=0, 5, and 10 (see figure 5). For
comprehensive purposes, the separated contributions to the excitedmolecular wave packet associated to the
2pσu and 3pσu states for thewhole range of negative and positive chirps are given in appendix. TheWigner
distribution and electromagnetic field for each pulse are displayed in the first row. The excited-state wave packet
created by one-photon absorption is given byfirst-order perturbation theory, seeequation (4a). The nuclear
probability distribution of thesemolecular wave packets is plotted in the second (Schrödinger picture) and third
row (Interaction picture), and as a function of the vibronic energy E in the bottom row.While the Schrödinger
picture ismore commonly employed to visualize the temporal evolution ofmolecular wave packets, the
interaction picture is particularly useful here since it removes the stationary terms in the evolution and only
shows the field-induced dynamics. Consequently, the interaction-picture wave packet remains unchanged after
the laser pulse. The same goes for the nuclear energy distribution, as seen in the bottom rowoffigure 5. The
interference patterns appearing in thewave packets (both as a function ofR andE) during the presence of the
field result from the time delay between the exciting frequencies [49], and thus only showup for chirped pulses
(and during the pulse). As is well-known [51], the asymptotic limit of the energy distribution of the excitedwave
packet after one-photon absorption is independent of the spectral phase of the pulse, and thus the chirp
parameter. In spatial coordinates, however, themolecular wave packets do reflect the relative phases of the
spectral components of the driving field. In the interaction picture results, we can see that the excitedwave
packet reaches an asymptotic formonce the field is turned off, but has a quite distinct distribution for each
chirped pulse, shown infigure 6(a) for seven different values of η. Because this is afirst-order process, changing
the sign of η corresponds to conjugation of the final wavepacket coefficients, leading to identical probability
distribution. Infigure 6(b), we plot the energy-differential excitation probabilities (vertical cut of bottom row
panels infigure 5 at t>T), which do not depend on the chirp parameter η at all.We show the excitation
probability into the two lowest excited states, 2pσu (green full line) and 3pσu (magenta full line). Due to the
much larger oscillator strength, the probability of excitation for the first excited state, 2pσu, is three orders of
magnitude larger than for the second excited state, 3pσu, with higher excitations being evenmore negligible.
Figure 6(b) also shows the energy distribution of the pulses (the Fourier transformof the electromagnetic field,
FT(E(t)) previously shown in themiddle columnoffigure 1). The excitation probability distribution is narrower
and left-shiftedwith respect to the pulse bandwidth due to the Franck–Condon overlap between the ground and
the excited state and theR-dependent dipole coupling. Interestingly, the excitation probability to the 3pσu state
has a double-peak structure, which is due to a zero-crossing of the corresponding transition dipolemoment
close to the equilibrium internuclear distance. The significantlymore efficient transition into the 2pσu excited
state thus implies that the ultrafastmolecular dynamics captured in the ionization yields shown infigure 4 is

8

New J. Phys. 20 (2018) 123004 D Jelovina et al



Figure 4.Panels in the four upper rows: electron (y-axis) and nuclear (x-axis) energy differential two-photon density of ionization
probability, i.e. fully differential energy distribution for the ionized fragments after Coulomb explosion for different values of the
chirp parameter as indicated in each subplot. Bottom row: corresponding nuclear energy distributions resulting after integration over
electron energy (the value of the chirp parameter is indicated in the legend).
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almost entirely due to themolecular wave packet evolution in this first excited state, andwe focus on that
contribution in the following.

We next discuss how a chirped pulse can be used tomimic a pump–probe scheme, and the conditions under
which this applies, extending the discussion presented in [27]. Intuitively, the addition of a chirp to the pulse can
be understood as inducing a time delay between ‘pumping’ and ‘probing’ frequencies within the pulse
bandwidth. The full two-photonwave packet, obtained from equation (4b), is shown infigures 7(a) and (b).
Panel (a) shows the second-ordermolecular wave packet as a function of internuclear distance for several values
of η, while panel (b) shows the corresponding probabilities as a function of nuclear kinetic energy (NKE). The
simplest way tomap this to a ‘traditional’ pump–probe setup is to assume that the first and second absorbed
photons are separated enough both in frequency and time to be able to disentangle their action on thewave
packet, which is equivalent to the condition that the two-photon two-color absorption process is sequential.
Alternatively, this approximation can be understood as assuming that the first-order wave packet is fully formed
before the second photon is absorbed, described by the limit t ¢ ¥ in equation (4b):

Figure 5. (From top to bottom). First row:Wigner time-frequency distributions for chirped pulses with η parameter as indicated.
Second row: nuclear wave packet of the excitedmolecule as a function of the internuclear distance (y-axis) and time (x-axis). Third
row: same as second row butwithin the interaction picture. Bottom row: nuclearwave packet of the excitedmolecule as a function of
energy (y-axis) and time (x-axis).

Figure 6. (a)Excited interaction-picture wave packet as a function of the internuclear distance after the interactionwith different
chirped pulses (η as indicated in the legend). These distributions correspond to the long-time limit of the third row offigure 5. (b)
Corresponding excitation probabilities, i.e. one-photon excitation yield (independent of η), as a function of the effective absorbed
photon energy, for the two lowest electronically excited states of themolecule, 2pσu (green) and 3pσu (magenta). Again, these
distributions correspond to the long-time limit of those shown in the lowest row offigure 5. The full gray line corresponds to the
energy distribution of the pulse in arbitrary units.
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This corresponds to the assumption that all the frequency components relevant for creating the excited-state
wave packet arrive before any of the frequency components that induce the probing transition. The second-
orderwave packets resulting from this sequential approximation are plotted infigure 7(c). For up-chirped pulses
with η>0, they are in quite good agreementwith the fully ab initiowave packets in panel (a). The applicability
of thismodel demonstrates that for these cases, the second photon absorption can be seen as a probe that projects
the excited-state wavepacket,figure 6(a), into the ionization continuum.The nuclear-energy-resolved ionization
probabilities associated to the full and sequential second-order wave packets are shown infigures 7(b) and (d),
respectively, with similarly good agreement as for the spatial wave packets.

4.1. Relationship between the chirp and an actual pump–probe time delay
Wenow analyze this effective pump–probe scheme inmore detail. Asmentioned in section 2.2, forGaussian
chirped pulses, equation (7), the double integral in equation (6) can be performed analytically evenwithout the
sequential approximation (taking here only the terms corresponding to absorption of photons), yielding
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where w z ze erfc iz2= --( ) ( ) is the Faddeeva or complex error function,Δt=ωf−ωg−2ω is the total
detuning of the two-photon absorption process, andΔr=Δωfm−Δωmg=ωf−2ωm+ωg is the frequency
difference between thefirst and second transition. Due to the definition of chirped pulses thatmaintains the total
pulse energy constant, the constant prefactor does not depend on the chirp parameter η (we have here neglected
a constant η-dependent phase that could be removed by absorbing it in the definition of the pulse, equation (7)).
Note that equation (13) only depends ‘trivially’ onΔt, specifically through aGaussian function that ensures total
energy conservationwithin the bandwidth of the pulse and induces a quadratic final-state-dependent phase.
Importantly, thefirst line of equation (13) does not depend onm, the intermediate state index. All thewave-
packet dynamics in the intermediate states, which is the relevant part formaking a connection to pump–probe
experiments, are thus encodedwithin the sum in the second line. Interestingly, this part of the expression does
not depend on the laser frequency, but just on the involved transition frequencies, the pulse duration, and the
chirp parameter.We also note that equation (13) is exact in the perturbative limit, and indeed reproduces the
numerical results perfectly.

Figure 7. Ionization probability density as a function of the internuclear distance in (a) and (c) and as a function of the nuclear kinetic
energy release in (b) and (d) for different values of the chirped parameter (see legend). (a) and (b) are the probabilities obtained by
solving the full dimensional TDSE, while (c) and (d) correspond to the probabilities extracted using a ‘sequential’model based on
second order time-dependent perturbation theory as explained in the text.
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The sequential approximation in equation (12) is equivalent to approximating the Faddeeva function
w z ze erfc iz2= --( ) ( ) in equation (13) as w z 2e ,z2» -( ) leading to
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wherewe have defined a eij i j
T ij

1
2 0

2 2m= áY Yñ w w- D -∣ ∣ ( ) as the dipole transition elementweighted by the pulse
envelope for the relevant transition, and have omitted factors that do not involvem, i.e. that are constant for a
givenfinal state. Here, the relative phase of different intermediate state contributions depends linearly on η, but
quadratically on the energyωm (recall thatΔr=ωf−2ωm+ωg). This is in contrast to traditional pump–probe
setups [52, 53], which feature analogous formulas inwhich the phase depends linearly on the intermediate state
energy and time delay. Aswe have previously shown [27] and summarize here, the action of a chirped pulse can
bemapped to a traditional pump–probe setupwithin this sequential approximation under the assumption that
the dominant contributions are concentrated close to an average intermediate energy .mw̄ Expanding the
exponent up tofirst order in δ, with ,m mw w d= +¯ then gives
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where Tr 0
2t h= D̄ is the effective time delay and the termquadratic in δ can be neglected for sufficiently small δ.

For large enough values of η, the effective time delay τmatches the difference between the timeswhen the
instantaneous frequency t,w h( ) is resonantwith the average transition energies mgw̄ and .fmw̄ In summary,
these expressions demonstrate that, within the validity of the sequential approximation, the chirped pulse acts
like a conventional pump–probe setup, butwith an effective time delay proportional to the average energy
difference of the transitions of interest.

We next investigate whether thismapping still can be performedwithout the sequential approximation. The
final-state amplitude can then bewritten as
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The complementary error function erfc with complex argument does not correspond to a pure phase, and thus
affects the relative amplitudes of the effective intermediate wavepacket. Indeed, it encodes the sign of the chirp
by favoring contributions inwhich the second induced transition has higher (lower) energy than thefirst one,
Δr>0 (Δr<0), for up-chirped (down-chirped) pulses, with other contributions suppressedmore
efficiently as h∣ ∣ increases. However, as can be seen infigure 8, both the absolute value and phase of

F Terfc 1 ir
i

2 0 h= - D -( ) are approximately constantwhen the chirp is chosen to correspond to the
physically relevant transition, i.e. whenΔr and η have the same sign (only positive values of η are shown since
only the productΔrη enters the formula). For completeness, note that the divergence and rapid phase oscillation
of F for large D∣ ∣are canceled out by the exponential prefactor of the Faddeeva function in the full two-photon
amplitude. In brief, this analytical approach demonstrates that the chirped pulse thus indeed provides a good

Figure 8.Absolute value (top) and phase (bottom) of the complementary error function contribution F to the two-photon amplitude.
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approximation of a pump–probe setup, althoughwith an additionalmodulation in the effective intermediate
wave packet amplitudes compared to the sequentialmodel or two-pulse pump–probe setups.

5. Conclusions

Retrieving the dynamical processes occurring in atoms andmolecules on the attosecond time scale is a
challenging task that requires sources with attosecond stability,more than attosecond duration.We have shown
a theoretical study using frequency-chirped ultrashort pulses tomanipulatemolecular ionization and to obtain a
time-resolved image of the excitedmolecular dynamics.We have used H2

+ as testbed to perform ab initio
simulations beyond the Born–Oppenheimer approximation and investigate two-photonmolecular ionization
with such chirped pulses. First, we have shown that for intermediate values of the chirp parameter and despite
the decoherence introduced by the nuclear degrees of freedom,molecular ionization yields can bemanipulated
by tuning the chirp of a pulse, leading to amodulation of the ionization probability by up to one order of
magnitude.Moreover, we have demonstrated that the interference patterns previously described in two-photon
excitation of atoms using chirped pulses in the optical regime [49] remain observable in the context ofUV/XUV
photoionization. Nevertheless, because thefinal electronic states nowbelong to a continuum, an experimental
observation of these interferences can only be achieved perfoming energy-differential measurements, for both
atomic andmolecular targets. The laser intensities and pulse durations employed are nowadays experimentally
available [6, 54–56].Moreover, the intensity of the signal retrieved is of the same order of that one found in a
recent attosecondUVpump–UVprobe experiment [57]where the ultrafast nuclear-electron dynamics in the
excited hydrogenmolecule is probed bymonitoring the time-delay-dependent ionization probability.
Therefore, the experimental feasibility of the proposed schememostly relies on the tunability of the spectral
chirp [58–61].

We have further investigated how the chirp-dependent energy differential ionization yields actually reveal
thewave packet structure and dynamics, triggered in the excitedmolecule, both in real and energy space, as
proposed in [27]. Such dynamics can be retrieved bymeans of a sequentialmodel, similar to those used to
interprete experiments performedwith standard pump–probe setup. In addition, we have presented an
analytical solution for the full two-photon ionization problem that allows us to verify the validity this sequential
picture, and formally demonstrates that single chirped pulses can indeed provide the same information as
standard pump–probe setups.
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Appendix. Chirp-induced dynamics in the excitedmolecule

For completeness, we here discuss in detail the ultrafast dynamics triggered in the excitedmolecule for thewhole
range of chirp parameters investigated. Note that, because of the energetics of ourmolecular target and the
chosen laser parameters, in the current work, we aremostly probing the dynamics associated to a vibronic wave
packet in only the first excited state 2pσu. However, our scheme could easily be applied to othermolecular
targets where excitation to a higher excited state or amanifold of electronic states becomes relevant. As an
example, we show the nuclear wave packet dynamics triggered by different up- and down-chirped pulses in the
first excited electronic state, 2pσu (figure A1), and in the second excited state, 3pσu (figure A2). Since in H ,2

+ the
population in the latter is three orders ofmagnitude smaller, its contribution to the ionization after absorption
of the second photon is negligible. Similarly, for the down-chirped pulses, thewave packet dynamics seen in the
first row infigure A1 is not retrievable in the ionization signal for the current laser parameters because the
frequencies arriving later in time are too low to cause ionization.However, by properly tailoring the chirped
pulse parameters, also these dynamics could bemapped into thefinal ionization channel.
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