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There is an increasing scientific and technological interest in the design and implementation of nanoscale sources of
quantum light. Here, we investigate the quantum statistics of the light scattered from a plasmonic nanocavity coupled
to a mesoscopic ensemble of emitters under low coherent pumping. We present an analytical description of the
intensity correlations taking place in these systems and unveil the fingerprint of plasmon-exciton-polaritons in them.
Our findings reveal that plasmonic cavities are able to retain and enhance excitonic nonlinearities, even when the
number of emitters is large. This makes plasmonic strong coupling a promising route for generating nonclassical
light beyond the single-emitter level. © 2017 Optical Society of America
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1. INTRODUCTION

Much research attention has focused lately on plasmonic nano-
cavities for strong coupling applications. In these devices, the
interaction between surface plasmons (SPs) and quantum emitters
(QEs) can be intense enough to yield new hybrid light–matter
states, the so-called plasmon-exciton-polaritons (PEPs) [1].
PEPs involving macroscopic QE ensembles have been reported
in planar [2–4] and nanoparticle [5–7] geometries, and they have
been used for controlling chemical reactions [8,9] or enhancing
charge/energy transport [10,11]. From a purely photonics per-
spective, room-temperature PEP lasing has been recently reported
[12,13]. However, in order to harness the full potential of
plasmonic cavities for quantum optical applications, plasmonic
systems that display nonlinearities at the single-photon level
would be highly desirable [14]. This is not possible in macro-
scopic ensembles, which present collective boson-like behavior
at pumping levels below the QE saturation regime [15].

Very recently, strong coupling signatures in the power spec-
trum of nanogap metallic cavities filled with only a few QEs have
been reported [16,17]. These experimental advances have been
accompanied by theoretical efforts aiming to clarify the near-field
conditions yielding PEPs at the single-emitter level [18].
However, the generation of nonclassical light through plasmonic
strong coupling has not been explored yet. In this paper, we fill
this gap by investigating the quantum statistics of the photons
scattered by a nanocavity strongly coupled to a mesoscopic emit-
ter ensemble (up to ∼100 QEs) under coherent pumping.

We develop an analytical description of the quantum optical
properties of the system that allows us to reveal that, contrary
to what is expected, plasmonic cavities enhance photon correla-
tions in QE ensembles of considerable size under strong coupling
conditions.

2. MODEL

Figure 1 depicts the system under study: N identical QEs with
transition dipole moment μQE and frequency ωQE interact with
the near-field ESP (the same for all QEs) of a single SP mode of
energy ωSP supported by a generic nanocavity. Both subsystems
undergo radiative and nonradiative damping, with decay rates
γQE∕SP � γrQE∕SP � γnrQE∕SP. We consider QEs in which pure
dephasing is negligible as this process would suppress quantum
correlations in the emitted photons. Both QEs and SPs are
coherently driven by a laser field EL with frequency ωL. The
steady-state density matrix ρ̂ for the hybrid system is the solution
of the Liouvillian equation (ℏ � 1)

i�ρ̂; Ĥ � � γSP
2

Lâ�ρ̂� �
γrQE

2
LŜ− �ρ̂� �

γnrQE

2

XN
i�1

Lσ̂i �ρ̂� � 0; (1)

where â, σ̂i, and Ŝ− � PN
i�1 σ̂i are the annihilation operators

for the SP mode, the ith QE, and the ensemble superradiant
state, respectively. The damping associated with operator Ô is
described by standard Lindblad superoperator LÔ�ρ̂� � 2Ô ρ̂ Ô†−

fÔ†Ô; ρ̂g. Equation (1) reflects that, contrary to nonradiative de-
cay, radiation damping is a coherent process that involves only the
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superradiant state of the QE ensemble (the rest of the
ensemble states are dark). In the rotating frame, the coherent dy-
namics is governed by the time-independent Tavis–Cummings
Hamiltonian [19]

Ĥ � ΔSPâ†â� ΔQEŜz � λ�Ŝ�â� Ŝ−â†�
� ΩSP�â† � â� � ΩQE�Ŝ� � Ŝ−�; (2)

with ΔQE∕SP � ωQE∕SP − ωL and Ŝz � 1
2 �Ŝ�; Ŝ−�. The QE–SP

coupling is λ � ESP · μQE, while ΩQE � EL · μQE and ΩSP �
EL · μSP are the pumping frequencies. Here, μSP is the effective
SP dipole moment. Once the steady-state density matrix is
known, the first- and second-order correlation functions can
be calculated from the scattered far-field operator at the detector
Ê−
D ∝ μSPâ† � μQEŜ

�. Note that we have taken advantage of the
subwavelength dimensions of the system to neglect the differences
between the electromagnetic Green’s function describing the
emission from the SP and the various QEs in Ê−

D.

3. RESULTS AND DISCUSSION

Before investigating photon correlations under strong coupling
conditions, we consider first both SP and QE subsystems un-
coupled. For this purpose, we solve Eq. (1) numerically and com-
pute the normalized zero-delay second-order correlation function
in the steady state g �2��0� � hÊ−

DÊ
−
DÊ

�
D Ê

�
Di∕hÊ−

DÊ
�
Di2. This mag-

nitude measures the intensity fluctuations of the emitted light and
is related to the probability for two photons to arrive at the same
time at the detector. Values of g �2��0� smaller than 1 indicate anti-
bunching, which cannot be achieved with classical light [20]. We
only consider low laser intensities and study quantum correlations
far from the pumping regime in which QE saturation becomes
relevant. Figure 2 plots g �2��0� as a function of the laser detuning
for an empty plasmonic cavity (black dashed–dotted line) and en-
sembles of different number of emitters (colored solid lines). For
comparison, the correlation spectra for QEs with γnrQE � 0 are also
shown (colored dashed lines). The parameters modeling the single
SP mode are ωSP � 3 eV, γSP � 0.1 eV, and μSP � 19 e · nm
[5]. Our calculations yield g�2��0� � 1, as expected from the
SP inherent bosonic character. For proof-of-principle purposes,
we have chosen QE parameters as ωQE � 3 eV, γrQE � 6 μeV
(μQE � 1 e · nm), and γnrQE � 15 meV. These values correspond
to organic molecules that display very low quantum yield and in
which collective strong coupling has been already reported [3,13].

As we show below, these types of QEs are also favorable for gen-
erating photon correlations. Notice then that for a practical reali-
zation of our findings with organic QEs, the experiments should
be carried out at low temperature in order to avoid pure dephasing
processes inside the QEs. For all N , photon statistics are sub-
Poissonian (g �2��0� < 1), but the degree of antibunching de-
creases rapidly with the ensemble size. As N increases, the system
bosonizes and the quantum character of the scattered light is lost
[note that g �2��0� � 0.96 for N � 50]. Neglecting nonradiative
damping only leads to an extremely narrow Lorentzian-like
profile, which suppresses antibunching exactly at zero detuning.
This observation is in agreement with the resonance fluorescence
phenomenology of a single QE [21], in which no incoherent
scattering occurs in the limit of vanishing pumping (saturation
effects in the QE population are negligible). Note that the
g �2��0� behavior obtained from our model is in accordance with
more sophisticated descriptions [22] of QE ensembles.

Exact numerical solutions to Eq. (1) can be obtained for strong
QE–SP coupling. However, such calculations are only possible for
configurations involving very small QE ensembles [23], even far
from the QE saturation regime [24]. In order to circumvent this
limitation and explore photon statistics in mesoscopic ensembles,
we map Eq. (1) into the effective non-Hermitian Hamiltonian [25]

Ĥ eff � Ĥ − i
γSP
2

â†â − i
γnrQE

2
Ŝz − i

γrQE

2
Ŝ�Ŝ−; (3)

where Ĥ is given by Eq. (2). Note that Ĥ eff depends only on the
collective bright-state operators of the QEs and is independent of
the dark states of the ensemble (superpositions of QE excitations
that do not couple to the plasmon or external light), which means
a drastic reduction in the Hilbert space for large N . Equation (3)
results from neglecting the refilling terms Ô ρ̂ Ô† in the Lindblad
superoperators in Eq. (1). This approach can be safely employed in
the regime of low pumping, where the ground state can be consid-
ered as a reservoir with population equal to 1. In this limit, we can
solve the Schrödinger equation for Ĥ eff , treating the coherent driv-
ing, EL, as a perturbative parameter [26]. More details on the
effective Hamiltonian approach can be found in Supplement 1.

As we are interested in intensity correlations, we can restrict our
perturbative treatment of Eq. (3) to second order and truncate the
Hilbert space at two excitations. In the following, for simplicity,

Fig. 1. QE ensemble resonantly coupled to a generic plasmonic cavity.
The right inset depicts the two-level QE model.

Fig. 2. Correlation function g�2��0� versus laser detuning for SP (black
dashed–dotted line) and QEs (colored lines) uncoupled. Various ensem-
ble sizes are shown, with (solid) and without (dashed) the inclusion of
QE nonradiative decay, γnrQE.
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we also assume the plasmonic near-field, ESP, parallel to the laser
field, EL (as, for example, in particle-on-mirror cavities [16]).
Moreover, we only consider the optimum configuration for strong
coupling, in which μQE is aligned with ESP. The scattering inten-
sity, I � hÊ−

DÊ
�
Di, is given within first-order perturbation theory as

I � �ηNμSPΩSP�2
���� ηΔ̃SP � Δ̃QE∕ηN − 2λ

Δ̃SPΔ̃QE − N λ2

����
2

; (4)

where η � μQE∕μSP � ΩQE∕ΩSP, Δ̃SP � ΔSP − iγSP∕2, and
Δ̃QE � ΔQE − i�γnrQE � N γrQE�∕2. Using second-order perturba-
tion theory, the correlation function, g �2��0�, can be expressed as

g �2��0� �
����1 − 1

N

�
ηΔ̃SP − λ

ηΔ̃SP � Δ̃QE∕ηN − 2λ

�
2 �Δ̃QE � iN γrQE∕2��Δ̃QEΔ̃SP � �Δ̃SP − λ∕η�2 − N λ2�
�Δ̃QE � iγrQE∕2��Δ̃QEΔ̃SP � Δ̃2

SP − N λ2� − Δ̃SP�N − 1�λ2
����
2

: (5)

Note that for γnrQE ≫ γrQE, Eq. (5) yields g
�2��0� � �1 − 1∕N �2

at λ � 0 and η → ∞, recovering the flat correlation spectra in
Fig. 2 for low-quantum-yield QE ensembles.

Figures 3(a)–3(d) render the far-field intensities (top row) and
correlations (bottom row) for a nanocavity filled with four differ-
ent QE ensembles N � 1, 5, 25, and 50, respectively. The hori-
zontal and vertical axes correspond to laser frequency and QE–SP
coupling strength, respectively. The latter is expressed through the
single-emitter cooperativity, C � 2λ2∕γQEγSP, with upper limit
C � 2 (λ � 0.03 eV), well below the collective ultrastrong cou-
pling regime. We restrict our attention to QE–SP resonant cou-
pling and consider the same parameters as in Fig. 2. Although the
quantitative results shown in Fig. 3 depend on the specifics of the
system, we have checked that our findings and their fundamental
implications remain valid for a wide range of realistic configura-
tions. As shown in Supplement 1, the behavior is also very similar

when the SP field is spatially inhomogeneous or when inhomo-
geneous broadening is introduced for the QEs (note that the
emitters cannot be formally described through a single bright state
in these cases but must be treated individually). Dipole–dipole
interactions among QEs are also analyzed in Supplement 1.
Our results reveal that these have a significant impact on photon
correlations in dense QE ensembles. Interestingly, we find that
antibunching is more robust than bunching when interactions
become large.

The complex g�2��0� patterns in Figs. 3(a2)–3(d2) reveal
that both photon bunching and antibunching occur in the strong

coupling regime. These panels also show that the main quantum
statistical features emerging at the single-emitter level (which are
in qualitative agreement with recent experimental reports on
semiconductor cavities [27,28]) are mostly retained as N in-
creases. Up to N ∼ 25, photon emission is antibunched within
a narrow frequency window located at C ≲ 1, which implies that
the single-emitter cooperativity can be considered as the key
parameter determining photon correlations in ensembles contain-
ing up to several tens of QEs [29]. Notice also that, as a difference
with high-quantum-yield QEs in low-loss semiconductor cavities,
the inherent nonradiative losses of organic molecules and plas-
monic systems allow observing antibunching for large C-values
(see Supplement 1 for more details). On the other hand, bunched
emission takes place at larger coupling strengths and within
broader spectral domains for all N . Remarkably, there are spectral
windows in which strong antibunching (g�2��0� ≈ 0) takes place

(   ) (   ) (   ) (   )

(   ) (    ) (   ) (   )

Fig. 3. (a1)–(d1) Scattering intensity I and (a2)–(d2) correlation function g �2��0� versus laser frequency and single emitter cooperativity for various QE–
SP systems. In the upper (lower) panels dotted (dashed) lines plot the PEP frequencies (half-frequencies) in the one-excitation (two-excitation) manifold.
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even for N � 50, whereas the emission from the uncoupled QE
ensemble is essentially classical (see Fig. 2). This is the main result
of this paper, namely, that in comparison to the uncoupled sub-
systems, collective plasmonic strong coupling can significantly
enhance photon correlations in mesoscopic PEP systems.

By taking advantage of our analytical approach, we can gain
physical insight into the results shown in Fig. 3. The intensity
maps present two scattering maxima, whose origins lie at the de-
nominator of Eq. (4). Its vanishing condition yields analytical
expressions for the dispersion of the lower (LP) and upper (UP)
PEPs in the first rung of the Tavis–Cummings ladder. These PEP
frequencies, which naturally incorporate the

ffiffiffiffiffi
N

p
scaling charac-

teristic of collective strong coupling, are plotted in dotted lines in
top panels. Note that the intensity maxima overlap with the PEP
dispersion bands, except for N � 1 and C ≲ 0.5. This region,
also perceptible for N � 5 at lower C, falls within the weak cou-
pling regime, where Fano-like interferences between SP and QE
emission gives rise to sharp scattering dips [30]. As N increases,
the contrast between UP (brighter) and LP (darker) scattering
peaks increases. By introducing the PEP frequencies in the nu-
merator of Eq. (4), the origin of this asymmetry becomes clear.
Neglecting QE and SP damping, we obtain I ∝ �1� ffiffiffiffiffi

N
p

η�2,
where the upper (lower) sign must be used for LP (UP).
Thus, QE and SP dipole moments are antiparallel along the
LP dispersion, which diminishes I as N approaches 1∕η2.

In a similar way as in the scattered intensity, we can expect that
the vanishing of the denominator in the second term of Eq. (5)
could give rise to nonclassical light. At N � 1, the resonant
frequencies emerging from this condition are equal to half the
energies of the LP (upper sign) and UP (lower sign) in the second
rung of the Jaynes–Cummings ladder [31]. For N > 1, the same
condition leads to a cubic equation: it accounts for the emergence
of the middle PEPs in the two-excitation manifold (whose real
half-frequency is equal to ωQE∕SP). Moreover, notice the presence
of the numerator of Eq. (4) in the denominator of the first factor
in Eq. (5). As discussed above, this term acquires the form �1 −ffiffiffiffiffi
N

p
η� at the LP band. Therefore, the darker character of LPs also

makes them more suitable for photon correlations. PEP half-
frequencies in the two-excitation manifold are plotted in dashed
lines in Figs. 3(a2)–3(d2). The regions of strong photon correlations
do not occur exactly at one of the polariton energies but slightly
above the LP dispersion. This indicates that photon correlations,
i.e., significant deviations from g �2��0� � 1, do not originate from
transitions along a single PEP ladder but from the interference in
the emission involving different hybrid states. This underlines the
crucial role that strong coupling plays: while each PEP by itself is
quasi-bosonic, the hybridization achieved through strong coupling
ensures the coexistence of multiple mixed light–matter states
separated by the Rabi splitting. It is the interference between
the emission from these different but closely related states that leads
to strongly nonclassical light emission.

In order to obtain a general view on the degree of bunching
and antibunching attainable through QE–SP coupling, we evalu-
ate Eq. (5) at its spectral maxima and minima. Figure 4 explore
these extreme g �2��0� values as functions of cooperativity and
number of emitters. The inset renders overlapping maps for
Max�g �2��0�� (yellow) and Min�g �2��0�� (violet), and the top
and bottom panels plot cuts of these maps for various C -values.
We can identify three domains according to the statistics of the
scattered photons. For small QE ensembles and large C , only

positive correlations take place, as in Figs. 3(a2)–3(c2) for
C > 1. In this regime, Max�g �2��0�� grows with increasing cou-
pling strength and develops a maximum at N ∼ 10 for all C . For
very large N , a second domain is apparent. In this limit, PEPs
bosonize as the 1∕N factor in Eq. (5) governs g �2��0�, yielding
maxima and minima approaching 1 monotonically as the number
of QEs increases. Both bunched and antibunched emission takes
place (within different spectral windows) at intermediate N and
C . In this third domain, positive correlations decay monotoni-
cally with N , whereas negative correlations are enhanced.
Min�g �2��0�� diminishes and reaches a minimum value, which
corresponds to the lowest g �2��0� achievable for a given N and
any C (or vice versa). It can be proven that this minimum coin-
cides with a sharp dip in the population of the plasmon state
(written as a linear combination of PEPs) in the two-excitation
manifold. In the limit of vanishing η (which is a good approxi-
mation for our problem at small N ), this condition simplifies
to C � γQE�γSP

2γSP
≃ 1

2 . Figure 4 (bottom) shows this minimum
developing with increasing cooperativity at N ∼ 10 and reaching
g �2��0� � 0 at C � 0.5. Remarkably, this zero in g�2��0� shifts to
larger N for higher cooperativity, yielding strong photon anti-
bunching at ensemble sizes as large as 100 QEs. Therefore, as
anticipated in Fig. 3(d2), plasmonic strong coupling leads to
the emergence of quantum nonlinearities in large excitonic sys-
tems, which would present g �2��0� ≃ 1 when not coupled to
the plasmonic nanocavity.

4. CONCLUSION

We have investigated the complex photon statistics phenomenol-
ogy that emerges from the strong coupling of a mesoscopic
ensemble of quantum emitters and a single plasmon mode sup-
ported by a generic nanocavity. We have presented an analytical
method describing the optical response of these systems under
low-intensity coherent illumination. Our approach provides in-
sights into the role that both the plasmon-exciton-polariton lad-
der and its tuning through the single emitter cooperativity play in
the emission of strongly correlated (bunched and/or antibunched)
light. Finally, our results demonstrate the robustness of these
compound systems against bosonization effects, predicting strong

Fig. 4. Maximum (top) and minimum (bottom) correlation functions
as functions of the QE ensemble size for several values of the single emitter
cooperativity. The inset in the upper panel shows the map of photon pos-
itive (yellow) and negative (violet) correlations as functions of N and C .
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intensity correlations at considerable ensemble sizes. Our theoreti-
cal findings demonstrate the feasibility and establish experimental
guidelines toward the realization of nanoscale nonclassical light
sources operating beyond the single-emitter level.
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See Supplement 1 for supporting content.
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