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A general ab initio and nonperturbative method to solve the time-dependent Schrédinger equation (TDSE)
for the interaction of a strong attosecond laser pulse with a general atom, i.e., beyond the models of quasi-
one-electron or quasi-two-electron targets, is described. The field-free Hamiltonian and the dipole matrices are
generated using a flexible B-spline R-matrix method. This numerical implementation enables us to construct
term-dependent, nonorthogonal sets of one-electron orbitals for the bound and continuum electrons. The
solution of the TDSE is propagated in time using the Arnoldi-Lanczos method, which does not require the
diagonalization of any large matrices. The method is illustrated by an application to the multiphoton excitation
and ionization of Ne atoms. Good agreement with R-matrix Floquet calculations for the generalized cross

sections for two-photon ionization is achieved.
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I. INTRODUCTION

The ongoing development of ultrashort and ultraintense
light sources based on high-harmonic generation and free-
electron lasers is providing new ways to generate optical
pulses capable of probing dynamical processes that occur on
attosecond time scales [1]. These attosecond pulses are pro-
viding a window to study the details of electron interactions
in atoms and molecules in the same way that femtosecond
pulses revolutionized the study of chemical processes. Single
attosecond pulses or pulse trains open up new avenues for
time-domain studies of multielectron dynamics in atoms,
molecules, plasmas, and solids on their natural, quantum-
mechanical time scale and at distances shorter than molecu-
lar and even atomic dimensions. These capabilities promise a
revolution in our microscopic knowledge and understanding
of matter [2]. A major role for theory in attosecond science is
to elucidate novel ways to investigate and to control elec-
tronic and other processes in matter on such ultrashort time
scales.

The ingredients of an appropriate theoretical and compu-
tational formulation require an accurate and efficient genera-
tion of the Hamiltonian and electron-field interaction matrix
elements, as well as an optimal approach to propagate the
time-dependent Schrodinger equation (TDSE). Many theo-
retical papers have been devoted to the propagation of the
TDSE including laser pulses. The earliest calculations em-
ployed finite-difference methods [3] to discretize the spatial
coordinates. As shown in a recent review by Pindzola et al.
[4], this method is still being used with great success today.
Other formulations employ finite-element [5], discrete-
variable, or finite-element discrete-variable representation
(FEDVR) [6—-8] approaches to discretize the coordinates and
thereby take advantage of the higher accuracy afforded by
these methods. Time propagation of the wave function may
also be accomplished by a variety of techniques. These in-
clude simple approaches such as the leapfrog or Runge-Kutta
[9] method to more sophisticated split-operator [10] or Kry-
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lov space iterations [11,12]. A selected set of references is
given in the bibliography. The relevant physical information
is extracted from the TDSE by projecting the wave function
onto appropriate long-range solutions after the laser inter-
action has vanished. The details of the process depend on
what parameters are desired; total ionic yields are relatively
simple to extract while differential or doubly differential
quantities necessitate more work [4].

In this paper we consider an approach to model the inter-
action of an atomic system with a strong laser pulse. We
combine a highly flexible R-matrix method [13-15], includ-
ing nonorthogonal sets of atomic orbitals to describe the ini-
tial bound state as well as the ejected-electron—residual-ion
interaction, with the Arnoldi-Lanczos iterative propagation
scheme. In contrast to many other methods currently being
used for such problems [16—18], the present implementation
is not restricted to (quasi)one or (quasi)two electron targets.
It can be applied to complex atoms, such as inert gases other
than helium and even open-shell systems with nonvanishing
spin and orbital angular momenta. We illustrate the method
with results for multiphoton excitation and ionization of
neon by a linearly polarized laser pulse.

II. NUMERICAL METHOD
A. The B-spline R-matrix method

Unless specified otherwise, atomic units are used through-
out this manuscript. The TDSE for the N-electron wave func-
tion W(ry,...,ry;t) of the present problem is given by

d
laq’(rl, ,rN;t) =[H0(r1, ,rN)

+ V(rh 7rN;t):|"P(rl7 9rN;t)7

(1)
where H(r|, ...,ry) is the field-free Hamiltonian containing

the sum of the kinetic energy of the N electrons, their poten-
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tial energy in the field of the nucleus (we assume an infinite
nuclear mass), and their mutual Coulomb repulsion, while
V(r;,...,ry;t) represents the interaction of the electrons with
the electromagnetic field.

We expand the wave function as

V(ry, ... ryst) = 2 Cl(OD (1, ... ry). 2)
q

Here ®(r|,...,ry) are a known set of N-electron states
formed from appropriately symmetrized products of atomic
orbitals. Optimization procedures tailored to the individual
neutral, ionic, and continuum orbitals may be employed
since the atomic one-electron orbitals are not forced to be
orthogonal. The radial parts of the atomic orbitals are them-
selves expanded in B-splines. In the practical implementation
of the B-spline R-matrix (BSR) method [15], factors that
depend on angular and spin momenta are separated from the
radial degrees of freedom. This enables the production of a
“formula tape” since many Hamiltonian matrix elements
share common features. Given a set of atomic orbitals, it is
possible to realize a great economy in the construction of the
actual Hamiltonian matrix using this symbolic tape even for
nonorthogonal basis sets, since ultimately every matrix ele-
ment is a linear combination of one-electron and two-
electron radial integrals multiplied by overlaps and angular
factors.

A significant advantage of the BSR method in the calcu-
lation of both bound and continuum states is the possibility
of employing nonorthogonal sets of atomic orbitals for dif-
ferent target states, thereby omitting the need for pseudo-
orbitals to account for the strong term-dependence that exists
in many complex targets, with the noble gases being a prime
example. Furthermore, we do not force the partial wave de-
scribing a continuum electron with orbital angular momen-
tum / to be orthogonal to all bound orbitals with the same /.
While the method gives great flexibility in the target descrip-
tion, allowing for accurate representations with relatively
small configuration interaction expansions, and also simpli-
fies the general form of the close-coupling expansion used to
generate the bound and excited states of the atomic system,
the price to pay is the representation of the field-free Hamil-
tonian and the dipole matrices in a nonorthogonal basis. If
desired, the nonorthogonality of the primitive B-spline basis
could easily be removed by replacing the splines by another
complete but orthogonal basis, e.g., a finite-element discrete-
variable representation [8]. However, if one wants the flex-
ibility associated with a nonorthogonal set of physical orbit-
als expanded in any primitive basis, it is necessary to deal
with the nonorthogonality issues directly.

The interaction of the atomic electrons with the time-
dependent electric potential, in the length form of the electric
dipole approximation, is given by

N
Viry, ....oryi) = 2D E@) -1y, (3)
i=1

where E(r) is the electric field. This form has been used for
the calculations in this paper. For simplicity of the notation,
we have omitted the spin coordinates of the electrons. Since
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the initial bound state is a singlet state in our case, only
singlet states will have to be coupled in the subsequent
partial-wave expansion.

The tasks at hand are now (i) the preparation of the initial
state, (ii) the time propagation of the C,(#), and (iii) the ex-
traction of physically relevant information from the final
state after the time propagation. As mentioned above, the
present approach employs the BSR method described in
Refs. [13-15] to compute all the time-independent matrix
elements needed for the problem. These parts require a rep-
resentation of the field-free Hamiltonian matrices for the
partial-wave symmetries 'S¢, P°,'P¢,'D°,'D?,..., as well
as the dipole matrices that couple any given value of the total
orbital angular momentum L with a given parity to the sym-
metries with L and L+1 of the opposite parity. All of these
matrices can be readily generated with the BSR method,
which may also be used to represent the initial bound state.
Since the time dependence of the Hamiltonian appears as a
simple multiplicative factor, this only needs to be done once
at the beginning of the calculation. When the expansion in
Eq. (2) is inserted into the Schrodinger equation, we obtain

N
l.S%C=[HO(r17 ""rN)+EE(t)'ri]C’ (4)
i=1

where S is the overlap matrix of the basis functions. Since
we are initially interested in excitation and single ionization
of the target atom by the laser pulse, the symmetries of the
field-free Hamiltonian must also contain a sufficient number
of singly excited bound states as well as the continuum states
representing electron scattering from the residual ion. As a
method developed to treat exactly such problems, the BSR
approach is particularly suitable to represent these states.

B. Time propagation

Time propagation of the initial wave function may be ac-
complished using a number of approaches. Explicit, norm-
conserving approaches, which rely on simple matrix-vector
multiplication, are generally preferred to implicit methods,
which require the solution of a set of linear equations. Of the
former methods, we found the Arnoldi-Lanczos approach
[11,19] to be quite effective, provided one is able to deal
with the (often) poorly conditioned matrices generated by
nonorthogonal basis sets. A general discussion and error
analysis of the Arnoldi-Lanczos method can be found in the
work of Saad [20]. Here we only sketch the basic ideas rel-
evant to our solution of the TDSE.

A straightforward approach is to transform the nonor-
thogonal many-electron basis to an orthogonal basis using
the Lowdin transformation to generate new field-free Hamil-
tonian and dipole matrix blocks through

Hé - S—1/2HO S_]/2, (5)

D' =S—1/2D S_I/Z. (6)

We thus have
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d
i—C'=H'(1)C’, (7)
ot

where H'(1)=Hy+E(t)D'. Since Hy, D, and S are all time
independent, this only requires the diagonalization of the
overlap matrix once, and a few matrix-vector multiplications
at every time step.

The essential idea of the Arnoldi-Lanczos method is to
construct a reduced Krylov space of dimension m, at time ¢
+At,

K,,(H',v) = span{v,H'v.H' v, ... H'" Yy},  (8)

where the initial vector v is the previously computed solution
at time 7. These vectors, which are generated by repeatedly
applying the Hamiltonian H'(¢) on the vector v, are not used
directly, but orthonormalized using the Lanczos recursion

18n+1vn+1 = (H, - an)vn - ﬂnvn—l (9)

to transform the Hamiltonian matrix to tridiagonal form [20]
as long as the original matrix is Hermitian. The elements «,
and B, of the tridiagonal matrix may be computed (see below
for a slightly more general case) during the recursion process
using simple scalar products. The resultant tridiagonal matrix
is then diagonalized using standard algorithms. The result of
the above procedure is an N X m matrix Q, which transforms
the matrices from H' with rank N to i with rank m. Finally,
the time evolution from ¢ to r+ At is achieved through

C'(t+ A1) = Qe ™QC' (v). (10)

At each step m of the process, a convergence test is per-
formed and once the propagated solution from two succes-
sive time steps has fallen below a predetermined criterion,
the recursion is terminated. As long as the rank m of the
process is substantially smaller than the original matrix size
N, the process can be very effective. Finally, we note that the
Arnoldi-Lanczos algorithm outlined above conserves the
norm, i.e., |C'(t+At)>=|C" (1|

One of the appealing features in the Arnoldi-Lanczos pro-
cedure is the fact that only matrix-vector multiplications and
scalar products are required. This allows us to take advantage
of specific algorithms if the matrix is sparse. It is also worth-
while to make a few remarks regarding the size of the Krylov
space and the time step to obtain stable and accurate solu-
tions. Since we need to generate new vectors in the Krylov
space repeatedly and hence want to keep the size of that
space manageable in practical calculations, we can only take
relatively small time steps. For most calculations presented
in this paper, 1000 time steps per optical cycle were used to
propagate the system. Not surprisingly, as already noted by
Park and Light [11], numerical experiments showed that en-
larging the Krylov space allows for larger time steps to be
taken. This relationship was used to optimize the efficiency
of our algorithm.

An alternative, theoretically equivalent approach general-
izes the Lanczos process to a nonorthogonal basis. It thus
allows for directly solving Eq. (4) without transforming it to
an orthogonal basis. In this case, we use the recursion
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Bn+lsvn+l =(H_ans)vn_:8nsvn—l =4y, (11)
where the v, are the Lanczos vectors. These vectors are re-
quired to satisfy the condition

vf,Svm =9

n,me+

(12)

This so-called S orthogonalization is possible since S is posi-
tive definite. The calculation proceeds along the following
steps. After computing

an=v:;an7 (13)

the g, may be generated through matrix-vector multiplica-
tion and previously obtained coefficients. The next step com-
putes

a1,
18n+1 = \”an lqn' (14)

In practice, no matrix inversions are performed. Instead, the
S matrix is decomposed using the Cholesky decomposition
for positive definite matrices

S=L'L (15)
at the beginning of the calculation. This yields
Bu =T, (16)
with
T,=(L™'q,. (17)

and only requires the solution of a triangular set of linear
equations once the Cholesky decomposition is performed. To
complete the calculation it is necessary to solve a second set
of triangular equations, namely,

vn+l=L_]Tn/Bn+l' (18)

From a numerical point of view, the Cholesky decomposition
is somewhat cheaper than the diagonalization of the overlap
matrix, while the solution of the triangular sets of linear sys-
tems at each iteration is comparable in cost to the matrix-
vector multiplication. For the case of an orthonormal basis,
S=1, the algorithms are identical. More importantly for fu-
ture work, we note that there are other possibilities, which
entirely avoid the need for either inverting or decomposing
any large matrices during the calculation [21].

For the present work, we implemented the Arnoldi-
Lanczos method with a fixed size of the Krylov space. As
expected, results obtained with either of the above methods
were identical, and the matrix sizes we had to deal with
(ranks of less than 500 for each individual block of the field-
free Hamiltonian and the dipole matrix) were so small that
we could actually check the results by performing an exact
diagonalization. A well-known alternative regarding the size
of the Krylov space requires checking the convergence at
each step and, if necessary, augmenting the size of the space.
By comparing results obtained with different sizes of the
Krylov space, we ensure numerical convergence of the final
results with the size of that space.

In addition, we check the dependence of the final results
on the number of coupled symmetries. It is well known [22]
that the number of L values to couple increases strongly with
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decreasing laser frequency. Employing the velocity gauge to
express the dipole operator is expected to reduce this prob-
lem [23]. However, the velocity gauge is problematic at short
distances, and the problems increase with the nuclear charge
of the target [24]. Hence, we plan to explore switching be-
tween gauges at some distance in future work. Finally, to
ensure that box effects do not disguise the actual physics, we
also use a masking function to avoid reflection from the
boundaries of our box.

III. APPLICATION: MULTIPHOTON IONIZATION OF NE

As a first application of our approach, we studied the
short-pulse, multiphoton ionization of Ne. The electric field
was taken as linearly polarized. We only accounted for
single-electron excitation and ionization leading to
15225%2p°nl bound states or 15*2s?2p k] continuum states in
the present, proof-of-principle, calculation. Extensions to
handle more complex excitations and/or double ionization
are possible and will be discussed in the conclusion of the
paper.

After the wave function has been propagated, the relevant
information is extracted by standard projection techniques.
This requires the ground-state wave function of the Ne atom
W, obtained either by imaginary time propagation or exact
diagonalization, and the unperturbed states ‘If?y,L, where the
label vy represents the collection of quantum numbers needed
to define the state of a bound or free electron in the field of
the residual atomic ion, asymptotically. In practice, these
states are constructed from a linear combination of products
of bound excited states of the Ne* ion coupled to a bound or
continuum function of the additional electron.

The quantities of interest for the present work are the total
survival probability of the initial state

Py =[PP, (19)
the probability of finding a given (y,L) state
%, (20)

Py,L = |<\I,(;)/,L|\I,>

and the total probability into a specific L
PL=2 P, (21)
Y

In computing P,,;, the time-propagated wave function is pro-
jected onto the singly excited states with an energy below
(excitation) or above (ionization) the single-ionization
threshold leading to Ne*. In practice, we compute the bound-
state fraction and get the contribution from the continuum by
subtraction plus the loss in the norm due to the masking
function.

Figure 1 shows our results for the response of a neon
atom in its ground state (2p°)'S to the effect of a ten-cycle
laser pulse with a sin® envelope. Since the frequency of the
laser pulse is large (sufficient to ionize the atom by absorp-
tion of a single photon), only a few values for the total an-
gular momentum L of the system have to be coupled to ob-
tain converged results for single ionization, with relatively
small dimensions m of the Krylov space. As seen from the
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FIG. 1. (Color online) Laser pulse (top panel), ground-state
survival and excitation probabilities (center), and single-ionization
probabilities (bottom) for the interaction of a short laser pulse of
frequency 0.845 a.u. and peak intensity of 3.5X 10'* W/cm? with a
neon atom in its (2p%)'S ground state. Using different sizes m of the
Krylov space and numbers of coupled L values (L,,,5), we demon-
strate in the center panel the numerical convergence of our results
for the survival probability of the ground state as a function of time.
In the bottom panel, we show the contributions to the total ioniza-
tion probability from ionization continua with different values of
the total orbital angular momentum L.

figure, the ionization process with the highest probability in-
deed is ionization to the P continuum, i.e., effectively a one-
photon absorption process leading to a free electron with
[=0 or [=2, respectively. The survival probability for the
ground state is approximately 60%, while the probability for
excitation is just under 10%. Finally, the probability for the
ejected electron to have an orbital angular momentum of
[=1 or [=3, ie., forming an L=0 or L=2 state of the
e—Ne" scattering problem, is small but not zero.
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FIG. 2. (Color online) Ground-state survival (left scale) and
total excitation and ionization probabilities (right scale) for laser
frequencies of 0.425 and 0.270 a.u. and a peak intensity of 3.5
X 10" W/cm?.

Figure 2 shows the response of the Ne atom to pulses with
approximately one-half and one-third of the laser frequency
used in Fig. 1. In this case, at least two or three photons,
respectively, need to be absorbed in order to ionize the sys-
tem. A significantly larger number of symmetries (we used
L.,,x=6) must be coupled to get converged results for these
cases. Note that excitation rather than ionization appears as
the dominating reaction process for w=0.27 a.u. and the la-
ser parameters chosen here.

The dependence of the ionization probability on the laser
intensity is plotted in Figure 3 for laser frequencies of 0.425
and 0.270 a.u., respectively. For peak intensities in the range
105X 10" W/cm?, the slopes in the log-log plot (in-
creases of about two or three orders of magnitude in the
probability per one order of magnitude increase in the inten-
sity) are consistent with the expectation from lowest-order
perturbation theory that ionization is effectively caused by
two-photon or three-photon processes, without hitting any
resonances. For higher laser intensities, the curve flattens be-
cause of both saturation and double ionization. The descrip-
tion of the latter processes is, in principle, also possible with
the current method. However, it requires the inclusion of
double-continuum states with a Ne?* core in the current ex-
pansion and, therefore, significantly more computational re-
sources.

As a further check of our present work, we now consider
the generalized cross section for two-photon ionization. Hav-
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FIG. 3. (Color online) Ionization probability vs laser peak
intensity at laser frequencies of 0.270 and 0.425 a.u.

ing obtained the total two-photon ionization rate I'® by
propagating the wave function in a longer pulse (30 optical
cycles in the present case), the generalized cross section o
for two-photon ionization is obtained as described by
Charalambidis et al. [25]. In Fig. 4, we compare our nonper-
turbative results for a few photon energies to the R-matrix
Floquet predictions of McKenna and van der Hart [26]. We
note satisfactory agreement for energies away from the first
resonance structure corresponding to the intermediate
(2p°3s)' P? state. Since the Floquet approach effectively cor-
responds to an infinitely long “pulse” and hence a sharp pho-
ton energy, it can resolve this structure, while we get a
broader maximum due to the frequency width of our pulse.
The shift in the energy position of the resonance is due to the
different structure models used in the two calculations.

To further illustrate the effect of the resonant (2p°3s)'P
state (around 16 eV in our model) we present the excitation
probability for three photon energies in Fig. 5. Away from
the resonance, at 15 and 17 eV, there are several Rabi oscil-
lations between the ground state and the excited state during
a 30-cycle pulse, and the maximum probability for excitation
is about 5% during these oscillations (right scale of Fig. 5).
On the other hand, we just reach the first maximum in the
excitation probability for the resonance energy of 16 eV after
30 cycles, and the value of that maximum is above 90% (left
scale of Fig. 5). This shows the strong effect of the energy

10~ T T T T T T T T T T
10k

10750 3

9---9---9g - -—-&-""

1071 F

Generalized cross section (cm?s)

10752 I X 1 X 1 X 1 X 1 X X
13 14 15 16 17 18 19
Photon energy (eV)

FIG. 4. (Color online) Generalized cross section for two-photon
ionization of Ne(2p®)'S as a function of photon energy. The current
results (circles) are compared with the R-matrix Floquet predictions
of McKenna and van der Hart [26].

053411-5



GUAN et al.
10— 71— 71— 71— 71— 0.08
w=0.551 a.u. (15 eV) — .
= w=10.588 a.u. (16 eV) ---- T
:Z; 08 [ w=0625 aur‘(/1\7 V) —-- 1006
o 06F 4 '
= 0.04
S 04t
fg L
S ool 0.02
. ,_171"7/‘: I T V0 sl B T T
005"~ 15 18 21 21 27 300

Time (optical cycles)

FIG. 5. (Color online) Excitation probability of the Ne(2p33s)! P
state for a 30-cycle laser pulse with photon energies of 15 (right
scale), 16 (left scale), and 17 eV (right scale) and a peak intensity
of 2.0X 103 W/cm?.

detuning on the frequency and the amplitude of the Rabi
oscillations.

IV. CONCLUSIONS AND OUTLOOK

We have described a general method for treating the in-
teraction of a strong attosecond laser pulse with a complex
atom. The approach combines a highly flexible B-spline
R-matrix method for the description of the initial state, other
bound states in the system, the ionic core, and the interaction
of the free electron with the residual ion after ionization,
with an efficient Arnoldi-Lanczos scheme for the time propa-
gation of the TDSE. The major advantages of the method are
(i) its generality and applicability to any complex many-
electron target, (ii) the possibility of generating highly accu-
rate target and continuum descriptions with relatively small
configuration interaction expansions, and (iii) an efficient
time-propagation technique. In the current paper we limited
the continuum states to include only singly ionized states. To
extend this to doubly ionized targets requires that we allow
two R-matrix orbitals outside a doubly charged ionic core. In
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principle, this is a straightforward extension of the current
codes, but in practice the size of the matrix blocks will in-
crease dramatically. The critical advantage of the present ap-
proach is that nonorthogonal basis sets should significantly
reduce the size of the configuration expansion compared to
approaches based on orthogonal sets.

In the future, we plan to further analyze and improve the
numerical efficiency of the method, particularly by investi-
gating different schemes of setting up the matrices. Prime
candidates are expansions in other complete bases such as
finite-element discrete-variable representations. The use of
many-electron expansions in nonorthogonal basis sets also
necessitates developing efficient, new approaches to the time
propagation of the wave function. While we have described
one possibility in this paper, it is not the only one and likely
far from the best approach. We are actively investigating
other methods, using approximate and easily computed in-
verses, which do not require any factorization or diagonal-
ization of large matrices. Most critically, we need to extend
the current BSR method to treat two free electrons outside an
ionic core, if we are to treat problems involving multiphoton
double ionization of complex targets and compare with re-
cent free-electron laser experiments such as those reported in
Refs. [27,28]. Finally, looking at angle-differential observ-
ables will also require a reliable method to extract the rel-
evant information, such as amplitudes from single and
double ionization, from the time-propagated wave function
[29]. All of these issues are currently under active investiga-
tion by our collaboration.
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