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We investigate electronic quantum transport through nanowires with one-sided surface roughness. A
magnetic field perpendicular to the scattering region is shown to lead to exponentially diverging
localization lengths in the quantum-to-classical crossover regime. This effect can be quantitatively
accounted for by tunneling between the regular and the chaotic components of the underlying mixed
classical phase space.
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Transport through a disordered medium is a key issue in
solid state physics which comprises countless applications
in (micro-) electronics and optics [1]. The ubiquitous
presence of disorder plays a prominent role for the behav-
ior of transport coefficients governing, e.g., the metal-
insulator transition [2]. The interest in disordered media
has recently witnessed a revival due to new experimental
possibilities to study the ‘‘mesoscopic’’ regime of transport
where a quantum-to-classical crossover gives rise to a host
of interesting phenomena [3].

In most investigations a static disorder is assumed to be
present in the bulk of a material. The strength and distri-
bution of the disorder potential determine whether trans-
port will be ballistic, diffusive, or suppressed in the
localization regime [1,3]. In nanodevices the reduction of
system sizes leads, however, to an increased surface-to-
volume ratio, for which surface roughness can represent
the dominant source of disorder scattering. While random
matrix theory (RMT) is successful in describing bulk dis-
ordered systems [4], its application to wires with surface
disorder is not straightforward [5].

In the present Letter we study electronic quantum trans-
port through a nanowire in the presence of one-sided
surface disorder and a magnetic field. We show both nu-
merically and analytically that by increasing the number of
open channels N in the wire, or equivalently, by increasing
the wave number kF, the localization length � increases
exponentially. Using a numerical approach that allows to
study extremely long wires we show an increase by a factor
107 (Fig. 1). Such a giant localization length falls outside
the scope of RMT predictions, � / N, previously studied
for this system [6]. Instead it can be understood in terms of
the underlying mixed regular-chaotic classical motion in
the wire. We find that the conductance through the wire is
controlled by tunneling from the regular to the chaotic part
of phase space. This process, often referred to as ‘‘dynami-
cal tunneling’’ [7], has been actively studied in quantum

chaos and plays an important role in the context of classi-
cally transporting phase-space structures [8–12]. Here we
establish a direct quantitative link between the exponential
increase of the localization length in mesoscopic systems
and the suppression of tunneling from the regular to the
chaotic part of phase space in the semiclassical limit.

We consider a 2D wire with surface disorder to which
two leads of width W are attached (Fig. 1, inset), with a
homogeneous magnetic field B perpendicular to the wire
present throughout the system. We simulate the disorder by
a random sequence of vertical steps. The wire can thus be
assembled from rectangular elements, referred to in the
following as modules, with equal width l, but random

109

107

105

103

10

 2  4  6  8  10  12  14
kFW/π

ξ

W

δ

B

l

(b)

(a)

(c)

FIG. 1 (color online). Localization length � for a wire with
surface roughness vs kFW=� � 1=heff . Results are compared for
wires with (a) one-sided disorder (OSD) with B � 0 (red �),
(b) OSD with B � 0 (green �), and (c) two-sided disorder with
B � 0 (blue �). In (a) an exponential increase of � is observed
in excellent agreement with Eq. (8) which has no adjustable
parameters (dashed line).
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heights h, uniformly distributed in the interval �W �
�=2; W � �=2�. This particular representation of disorder
allows for an efficient numerical computation of quantum
transport for remarkably long wires L! 1 by employing
the modular recursive Green’s function method [13]. We
first calculate the Green’s functions for M � 20 rectangu-
lar modules with different heights. A random sequence of
these modules is connected by means of a matrix Dyson
equation. Extremely long wires can be reached by imple-
menting an ‘‘exponentiation’’ algorithm [14]: Instead of
connecting the modules individually, we iteratively con-
struct different generations of ‘‘supermodules’’, each con-
sisting of a randomly permuted sequence of M modules of
the previous generation. Repeating this process leads to the
construction of wires whose length increases exponentially
with the number of generations [15].

The transmission (tmn) and reflection amplitudes (rmn)
for an electron injected from the left are evaluated by
projecting the Green’s function at the Fermi energy EF
onto all lead modes m, n 2 f1; . . . ; Ng in the entrance and
exit lead, respectively. Here N � bkFW=�c is the number
of open lead modes and kF the Fermi wave number. We
obtain the localization length � in a wire composed of L
modules (i.e., length Ll) by analyzing the dimensionless
conductance g � Tr�tyt� in the regime g� 1, extracting �
from hlngi 	 �L=�. The brackets h
 
 
i indicate the en-
semble average over 20 different realizations of disorder
and 3 neighboring values of wave numbers kF.

For increasing kF, we adjust the magnetic field B such
that the cyclotron radius rc � @kF=�eB� remains constant.
This leaves the classical dynamics invariant and allows for
probing the quantum-to-classical crossover as kF ! 1.
We choose rc � 3W and a disorder amplitude � �
�2=3�W such that we obtain a large regular region in phase
space (see below) and use a module width l � W=5. We
find for one-sided disorder an exponential increase of the
localization length � (Fig. 1), while � remains almost
constant when either (i) the magnetic field is switched off
or (ii) a two-sided disorder is considered. The latter clearly
rules out that the observed giant localization length is due
to edge states of the quantum Hall effect [3].

Before giving an analytic determination of the exponen-
tially increasing localization length, we provide an expla-
nation invoking the mixed classical phase-space structure
which captures the essential features of this increase.

The classical dynamics inside the disordered wire is
displayed by a Poincaré section in Fig. 2(b), for a vertical
cut at the wire entrance (x � 0) with periodic boundary
conditions in the x direction. The resulting section (y, py)
for px > 0 shows a large regular region with invariant
curves corresponding to skipping motion along the lower
straight boundary of the wire. Close to the upper disordered
boundary (y >W � �=2) the motion appears to be chaotic
for all py. A corresponding Poincaré section for px < 0
(not shown) is globally chaotic. The lowest transverse

modes [Fig. 2(a)] of the incoming scattering wave func-
tions overlap primarily with the regular island [Fig. 2(b)].
Only their exponential tunneling tail through the diamag-
netic potential barrier (in Landau gauge)

 V�y� � 1
2me!

2
c�y� y

0�2 � EF (1)

touches the upper disordered surface at y >W � �=2. In
Eq. (1), me is the electron mass, !c the cyclotron fre-
quency, and y0 the guiding center coordinate. These regular
modes can be semiclassically quantized as [16,17]

 

A
h
�
BA
h=e

� �m� 1=4� with m � 1; 2; . . . ; (2)

where A is the area in the Poincaré section enclosed by a
quantized torus and A � rcA=pF is the area in position
space enclosed by a segment of a skipping orbit. One finds

A�pFrc�arccos�1�����1���
������������������������
1��1���2

p
� for 0 �

� � �max � 1, where �rc is the y position at the top of
the cyclotron orbit. The size Areg of the regular island is
found for � � �max � �W � �=2�=rc. The Poincaré-
Husimi projections (i.e., projections onto coherent states
of the transverse eigenfunctions) show, indeed, a density
concentration near the quantized tori residing in the regular
region of phase space [Fig. 2(c)].

The lowest mode m � 1 in the center of the island has
the smallest tunneling rate [8,18,19]

 �1 	 exp
�
�C

Areg

h

�
(3)

to the chaotic sea with some constant C (see below). Its
temporal decay exp���1t� together with its velocity v1 �
@kx=me lead to an exponential decay as a function of
propagation length x, exp���1x=v1�. This gives a local-
ization length �	 ��1

1 [10]. When increasing kF, while
keeping the cyclotron radius rc fixed, the classical dynam-
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FIG. 2 (color online). (a) Nanowire with the regular transverse
modes (green) m � 4, 3, 2, 1 for kFW=� � 14:6. The gray
shaded part indicates the y range affected by disorder.
(b) Poincaré section showing a large regular island with outer-
most torus (dashed), a chaotic sea (blue dots), and quantized tori
corresponding to the regular modes (green). (c) Poincaré-Husimi
functions of these modes and their quantizing tori.
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ics remains invariant while the island area scales as Areg �

aregAPS. Here APS � 2pFW is the area of the Poincaré
section and areg is the relative size of the island. This
semiclassical limit is thus equivalent to decreasing the
effective Planck’s constant heff :� h=APS � �kFW=���1

and results in an exponential increase of the localization
length

 �	 exp
�
C
areg

heff

�
; (4)

for heff ! 0, qualitatively explaining Fig. 1(a). Moreover,
this exponential increase should set in when the first mode
fits into the island, i.e., for Areg=h � 1. For the parameters
of Fig. 1(a) we have �max � 2=9, resulting in the critical
value kFW=� � 3:5, which is in very good agreement with
the numerical result. By contrast, for two-sided disorder or
for B � 0 no regular island with skipping orbits exists and
� shows no exponential increase; see Fig. 1.

We now turn to an analytical derivation of the localiza-
tion length using the specifics of the scattering geometry
(Fig. 1 inset). To this end we first calculate the transmission
amplitude t11 of the transverse regular mode m � 1 by
considering its consecutive projections from one module to
the next

 t11 �
YL�1

j�1

Z W��=2

0
�h�j��y��h�j�1��y�dy; (5)

where �h�j��y� is the mode wave function in module j with
height h�j�. Equation (5) amounts to a sequence of sudden
approximations for the transition amplitude between adja-
cent surface steps. As the wave function is exponentially
suppressed at the upper boundary, the scale lkF introduced
by the corners drops out of the calculation. For simplicity, a
few technical approximations have been invoked, whose
accuracy can be checked numerically: (i) terms in the
transmission from one module to the next that involve
reflection coefficients and are typically smaller by a factor
of 5 are neglected, (ii) contributions from direct coupling
between different island modes are neglected, and (iii) the
factor �2y� y0

h�j� � y
0
h�j�1�� from the orthonormality rela-

tion for the � functions [13] is omitted in the above integral
as its contribution is negligible.

The modes pertaining to different heights h can be
written as �h�y� � ��1�y� � "h�y��=Nh, where �1�y� is
the mode wave function if there was no upper boundary,
"h�y� is the correction that is largest at the upper boundary
[where �h�h� � 0], and Nh is a normalization factor.
Keeping only terms of order O�"h� and using a WKB
approximation for "h�y� around y � hmin � W � �=2
leads to

 t11 � �1� ��
2L=M with � �

�2
1�hmin�

kF
������������������������
V�hmin�=EF

p : (6)

According to Eq. (6) the coupling strength is quantitatively

determined by the tunneling electron density at y � hmin in
the classically forbidden region of the 1D diamagnetic
potential, Eq. (1). The conductance in the regime g� 1
is now given by

 g � jt11j
2 � exp��4�L=M�; (7)

resulting in a localization length � � M=�4��. Using a
WKB approximation for �1�y� we find

 ��heff� � �ah
�2=3
eff � b� exp�ch�1

eff �1� dh
2=3
eff �

3=2�; (8)

with coefficients a � �16�5�1=3�M	
�1=3, b �
�2�z0�M, c � ��32=9�1=2	3=2
�1=2�1� �3=20�	
�1�,
d � �z0
1=3=�21=3�2=3	�. Here z0 � �2:338 is the first
zero of the Airy function Ai�z�, � �

R
1
z0

Ai�z�2dz, 	 �
hmin=W, and 
 � rc=W are dimensionless parameters
[20]. Equation (8) is in very good quantitative agreement
with the numerically determined localization length
[Fig. 1(a)]. We conclude that tunneling from the regular
phase-space island is primarily due to interaction of each
regular mode with the rough surface rather than via suc-
cessive transitions from inner to outer island modes.

We note that the constant C in Eqs. (3) and (4) is found
to be C � 2��1� �289=960�	
�1�, which differs from
C � 2� [19] and C � 3� ln4 [18] derived for other ex-
amples of dynamical tunneling from a resonance-free
regular island to a chaotic sea. We also note that the scaling
behavior of � in Eq. (8) is reminiscent of previously
obtained results for diffusive 2D systems (see [1]).

For the case of a constant magnetic field B, increasing kF
increases the cyclotron radius, rc / kF, and the classical
dynamics is no longer invariant. In particular, the area of
the regular island Areg 	

������
kF
p

shrinks compared to APS 	

kF as skipping motion is increasingly suppressed.
Nevertheless, the arguments leading to Eqs. (4) and (8)
remain applicable and yield a localization length that in-
creases dramatically as �	 exp�const

������
kF
p
� in agreement

with numerical observations (not shown).
Now we turn to the behavior of the conductance for

wires of lengths smaller than the localization length.
Modes with largerm have larger amplitudes near the rough
surface and thus couple more strongly to the chaotic part of
phase space. They have, consequently, larger tunneling
rates �m and smaller localization lengths �m 	 ��1

m . The
successive elimination of modes as a function of the length
L of the wire results in a sequence of plateaus [Fig. 3(a)].
For L > �m the mode m no longer contributes to transport,
as can be seen by its individual contribution to the trans-
mission in Fig. 3(b). This disappearance of regular modes
is reflected in the averaged Poincaré-Husimi distributions
calculated from incoherent superpositions of all modes
entering from the left and scattering to the right. Also
shown are the complementary distributions obtained for
backscattering from right to right. For small L these
Poincaré-Husimi functions are outside the regular island,
while with increasing L they begin to ‘‘flood’’ it [11]. This
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process is complete for lengths L
 �. The complemen-
tarity of the Husimi distributions illustrates that tunneling
between the regular island and the chaotic sea proceeds
symmetrically in both directions, as required by the uni-
tarity of the scattering matrix.

Summarizing, we have presented a numerical computa-
tion and an analytical derivation for the exponential in-
crease of the localization length in a two-dimensional
system of a quantum wire with one-sided surface disorder.
Our approach, based on a mixed phase-space analysis, also
explains the increase of � over 1 order of magnitude under
increase of the magnetic field observed in Ref. [6]. It sets in
for a magnetic field for which the regular island is large
enough to accommodate at least one quantum mechanical
mode. Clearly, the RMT result, � / N, which ignores the
mixed phase-space structure, no longer applies. Instead, we
find that the giant localization length (Fig. 1) in this dis-
ordered mesoscopic device is determined by the tunneling
from the regular to the chaotic region, the rate of which is
exponentially suppressed in the semiclassical regime.
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FIG. 3 (color online). (a) Averaged conductance hgi vs length
L of the wire. The stepwise decrease is accompanied by the
disappearance of the regular modes and the flooding of the island
region by chaotic states. The Poincaré-Husimi distributions to
the left (right) of the curve correspond to scattering from left to
right (backscattering from right to right). (b) Transmission hTmi
of the incoming mode m vs L.
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